These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 27065247)

  • 1. Tuning the Lattice Parameter of InxZnyP for Highly Luminescent Lattice-Matched Core/Shell Quantum Dots.
    Pietra F; De Trizio L; Hoekstra AW; Renaud N; Prato M; Grozema FC; Baesjou PJ; Koole R; Manna L; Houtepen AJ
    ACS Nano; 2016 Apr; 10(4):4754-62. PubMed ID: 27065247
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Developing Lattice Matched ZnMgSe Shells on InZnP Quantum Dots for Phosphor Applications.
    Mulder JT; Kirkwood N; De Trizio L; Li C; Bals S; Manna L; Houtepen AJ
    ACS Appl Nano Mater; 2020 Apr; 3(4):3859-3867. PubMed ID: 32363330
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Beneficial effects of water in the colloidal synthesis of InP/ZnS core-shell quantum dots for optoelectronic applications.
    Ramasamy P; Kim B; Lee MS; Lee JS
    Nanoscale; 2016 Oct; 8(39):17159-17168. PubMed ID: 27540861
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of Colloidal Blue-Emitting InP/ZnS Core/Shell Quantum Dots with the Assistance of Copper Cations.
    Huang F; Bi C; Guo R; Zheng C; Ning J; Tian J
    J Phys Chem Lett; 2019 Nov; 10(21):6720-6726. PubMed ID: 31549508
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Suppressing the Cation Exchange at the Core/Shell Interface of InP Quantum Dots by a Selenium Shielding Layer Enables Efficient Green Light-Emitting Diodes.
    Sun Z; Wu Q; Wang S; Cao F; Wang Y; Li L; Wang H; Kong L; Yan L; Yang X
    ACS Appl Mater Interfaces; 2022 Apr; 14(13):15401-15406. PubMed ID: 35316038
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quasi-Shell-Growth Strategy Achieves Stable and Efficient Green InP Quantum Dot Light-Emitting Diodes.
    Wu Q; Cao F; Wang S; Wang Y; Sun Z; Feng J; Liu Y; Wang L; Cao Q; Li Y; Wei B; Wong WY; Yang X
    Adv Sci (Weinh); 2022 Jul; 9(21):e2200959. PubMed ID: 35618484
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemical Structure, Ensemble and Single-Particle Spectroscopy of Thick-Shell InP-ZnSe Quantum Dots.
    Reid KR; McBride JR; Freymeyer NJ; Thal LB; Rosenthal SJ
    Nano Lett; 2018 Feb; 18(2):709-716. PubMed ID: 29282985
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Near-Unity Photoluminescence Quantum Yield of Core-Only InP Quantum Dots
    Stam M; Almeida G; Ubbink RF; van der Poll LM; Vogel YB; Chen H; Giordano L; Schiettecatte P; Hens Z; Houtepen AJ
    ACS Nano; 2024 Jun; 18(22):14685-14695. PubMed ID: 38773944
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Addition of Zn during the phosphine-based synthesis of indium phospide quantum dots: doping and surface passivation.
    Mordvinova NE; Vinokurov AA; Lebedev OI; Kuznetsova TA; Dorofeev SG
    Beilstein J Nanotechnol; 2015; 6():1237-46. PubMed ID: 26114082
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bandgap Engineering of Indium Phosphide-Based Core/Shell Heterostructures Through Shell Composition and Thickness.
    Toufanian R; Piryatinski A; Mahler AH; Iyer R; Hollingsworth JA; Dennis AM
    Front Chem; 2018; 6():567. PubMed ID: 30515380
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Full-Spectrum InP-Based Quantum Dots with Near-Unity Photoluminescence Quantum Efficiency.
    Van Avermaet H; Schiettecatte P; Hinz S; Giordano L; Ferrari F; Nayral C; Delpech F; Maultzsch J; Lange H; Hens Z
    ACS Nano; 2022 Jun; 16(6):9701-9712. PubMed ID: 35709384
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ZnF
    Li H; Zhang W; Bian Y; Ahn TK; Shen H; Ji B
    Nano Lett; 2022 May; 22(10):4067-4073. PubMed ID: 35536635
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of far-red- and near-infrared-emitting Cu-doped InP/ZnS (core/shell) quantum dots with controlled doping steps and their surface functionalization for bioconjugation.
    Lim M; Lee W; Bang G; Lee WJ; Park Y; Kwon Y; Jung Y; Kim S; Bang J
    Nanoscale; 2019 May; 11(21):10463-10471. PubMed ID: 31112192
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly luminescent core-shell InP/ZnX (X = S, Se) quantum dots prepared via a phosphine synthetic route.
    Mordvinova N; Vinokurov A; Kuznetsova T; Lebedev OI; Dorofeev S
    Dalton Trans; 2017 Jan; 46(4):1297-1303. PubMed ID: 28067374
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ga for Zn Cation Exchange Allows for Highly Luminescent and Photostable InZnP-Based Quantum Dots.
    Pietra F; Kirkwood N; De Trizio L; Hoekstra AW; Kleibergen L; Renaud N; Koole R; Baesjou P; Manna L; Houtepen AJ
    Chem Mater; 2017 Jun; 29(12):5192-5199. PubMed ID: 28706347
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Double-Shelled InP/ZnMnS/ZnS Quantum Dots for Light-Emitting Devices.
    Zhang W; Zhuang W; Liu R; Xing X; Qu X; Liu H; Xu B; Wang K; Sun XW
    ACS Omega; 2019 Nov; 4(21):18961-18968. PubMed ID: 31763517
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of discrete and gradient mid-shell structures on the photoluminescence of single InP quantum dots.
    Lee SH; Kim Y; Jang H; Min JH; Oh J; Jang E; Kim D
    Nanoscale; 2019 Dec; 11(48):23251-23258. PubMed ID: 31782468
    [TBL] [Abstract][Full Text] [Related]  

  • 18. InP Quantum Dots: Synthesis and Lighting Applications.
    Chen B; Li D; Wang F
    Small; 2020 Aug; 16(32):e2002454. PubMed ID: 32613755
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Widely tunable emissions of colloidal Zn(x)Cd(1-x)Se alloy quantum dots using a constant Zn/Cd precursor ratio.
    Kim JU; Lee JJ; Jang HS; Jeon DY; Yang H
    J Nanosci Nanotechnol; 2011 Jan; 11(1):725-9. PubMed ID: 21446532
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced thermal stability of InP quantum dots coated with Al-doped ZnS shell.
    Koh S; Lee H; Lee T; Park K; Kim WJ; Lee DC
    J Chem Phys; 2019 Oct; 151(14):144704. PubMed ID: 31615236
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.