These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 27065403)

  • 1. A Framework to Predict Uptake of Trace Organic Compounds by Plants.
    Kumar K; Gupta SC
    J Environ Qual; 2016 Mar; 45(2):555-64. PubMed ID: 27065403
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting trace organic compound attenuation with spectroscopic parameters in powdered activated carbon processes.
    Ziska AD; Park M; Anumol T; Snyder SA
    Chemosphere; 2016 Aug; 156():163-171. PubMed ID: 27174829
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting trace organic compound breakthrough in granular activated carbon using fluorescence and UV absorbance as surrogates.
    Anumol T; Sgroi M; Park M; Roccaro P; Snyder SA
    Water Res; 2015 Jun; 76():76-87. PubMed ID: 25792436
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Attenuation of trace organic compounds (TOrCs) in bioelectrochemical systems.
    Werner CM; Hoppe-Jones C; Saikaly PE; Logan BE; Amy GL
    Water Res; 2015 Apr; 73():56-67. PubMed ID: 25644628
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Occurrence and fate of emerging trace organic chemicals in wastewater plants in Chennai, India.
    Anumol T; Vijayanandan A; Park M; Philip L; Snyder SA
    Environ Int; 2016; 92-93():33-42. PubMed ID: 27054837
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sorption of ionized and neutral emerging trace organic compounds onto activated sludge from different wastewater treatment configurations.
    Hyland KC; Dickenson ER; Drewes JE; Higgins CP
    Water Res; 2012 Apr; 46(6):1958-68. PubMed ID: 22316557
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plant uptake of pharmaceutical chemicals detected in recycled organic manure and reclaimed wastewater.
    Tanoue R; Sato Y; Motoyama M; Nakagawa S; Shinohara R; Nomiyama K
    J Agric Food Chem; 2012 Oct; 60(41):10203-11. PubMed ID: 23003104
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The occurrence of emerging trace organic chemicals in wastewater effluents in Saudi Arabia.
    Alidina M; Hoppe-Jones C; Yoon M; Hamadeh AF; Li D; Drewes JE
    Sci Total Environ; 2014 Apr; 478():152-62. PubMed ID: 24531125
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On-line sensor monitoring for chemical contaminant attenuation during UV/H2O2 advanced oxidation process.
    Yu HW; Anumol T; Park M; Pepper I; Scheideler J; Snyder SA
    Water Res; 2015 Sep; 81():250-60. PubMed ID: 26074188
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Variability of trace organic chemical concentrations in raw wastewater at three distinct sewershed scales.
    Teerlink J; Hering AS; Higgins CP; Drewes JE
    Water Res; 2012 Jun; 46(10):3261-71. PubMed ID: 22516176
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Removal of trace organic chemicals in wastewater effluent by UV/H
    Nihemaiti M; Miklos DB; Hübner U; Linden KG; Drewes JE; Croué JP
    Water Res; 2018 Nov; 145():487-497. PubMed ID: 30193192
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Properties governing the transport of trace organic contaminants through ion-exchange membranes.
    Vanoppen M; Bakelants AF; Gaublomme D; Schoutteten KV; Vanden Bussche J; Vanhaecke L; Verliefde AR
    Environ Sci Technol; 2015 Jan; 49(1):489-97. PubMed ID: 25422872
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rejection of trace organic compounds by forward osmosis membranes: a literature review.
    Coday BD; Yaffe BG; Xu P; Cath TY
    Environ Sci Technol; 2014 Apr; 48(7):3612-24. PubMed ID: 24552278
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fate of trace organics in a wastewater effluent dependent stream.
    Dong B; Kahl A; Cheng L; Vo H; Ruehl S; Zhang T; Snyder S; Sáez AE; Quanrud D; Arnold RG
    Sci Total Environ; 2015 Jun; 518-519():479-90. PubMed ID: 25777953
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of the Physicochemical Properties of Acaricides Based on Lipinski's Rule of Five.
    Chen X; Li H; Tian L; Li Q; Luo J; Zhang Y
    J Comput Biol; 2020 Sep; 27(9):1397-1406. PubMed ID: 32031890
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigating the role for adaptation of the microbial community to transform trace organic chemicals during managed aquifer recharge.
    Alidina M; Li D; Drewes JE
    Water Res; 2014 Jun; 56():172-80. PubMed ID: 24681234
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Elucidation of removal processes in sequential biofiltration (SBF) and soil aquifer treatment (SAT) by analysis of a broad range of trace organic chemicals (TOrCs) and their transformation products (TPs).
    Hermes N; Jewell KS; Schulz M; Müller J; Hübner U; Wick A; Drewes JE; Ternes TA
    Water Res; 2019 Oct; 163():114857. PubMed ID: 31336207
    [TBL] [Abstract][Full Text] [Related]  

  • 18. UV/H
    Miklos DB; Hartl R; Michel P; Linden KG; Drewes JE; Hübner U
    Water Res; 2018 Jun; 136():169-179. PubMed ID: 29501761
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sequential biofiltration - A novel approach for enhanced biological removal of trace organic chemicals from wastewater treatment plant effluent.
    Müller J; Drewes JE; Hübner U
    Water Res; 2017 Dec; 127():127-138. PubMed ID: 29035766
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fate of bulk and trace organics during a simulated aquifer recharge and recovery (ARR)-ozone hybrid process.
    Yoon MK; Drewes JE; Amy GL
    Chemosphere; 2013 Nov; 93(9):2055-62. PubMed ID: 23942016
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.