These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

432 related articles for article (PubMed ID: 27065440)

  • 1. Sinusoidal nanotextures for light management in silicon thin-film solar cells.
    Köppel G; Rech B; Becker C
    Nanoscale; 2016 Apr; 8(16):8722-8. PubMed ID: 27065440
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Smooth anti-reflective three-dimensional textures for liquid phase crystallized silicon thin-film solar cells on glass.
    Eisenhauer D; Köppel G; Jäger K; Chen D; Shargaieva O; Sonntag P; Amkreutz D; Rech B; Becker C
    Sci Rep; 2017 Jun; 7(1):2658. PubMed ID: 28572669
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulations of sinusoidal nanotextures for coupling light into c-Si thin-film solar cells.
    Jäger K; Barth C; Hammerschmidt M; Herrmann S; Burger S; Schmidt F; Becker C
    Opt Express; 2016 Mar; 24(6):A569-80. PubMed ID: 27136877
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combining tailor-made textures for light in-coupling and light trapping in liquid phase crystallized silicon thin-film solar cells.
    Köppel G; Eisenhauer D; Rech B; Becker C
    Opt Express; 2017 Jun; 25(12):A467-A472. PubMed ID: 28788877
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Honeycomb micro-textures for light trapping in multi-crystalline silicon thin-film solar cells.
    Eisenhauer D; Sai H; Matsui T; Köppel G; Rech B; Becker C
    Opt Express; 2018 May; 26(10):A498-A507. PubMed ID: 29801256
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combining light-harvesting with detachability in high-efficiency thin-film silicon solar cells.
    Ram SK; Desta D; Rizzoli R; Bellettato M; Lyckegaard F; Jensen PB; Jeppesen BR; Chevallier J; Summonte C; Larsen AN; Balling P
    Nanoscale; 2017 Jun; 9(21):7169-7178. PubMed ID: 28513716
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Embedded biomimetic nanostructures for enhanced optical absorption in thin-film solar cells.
    Tsai MA; Han HW; Tsai YL; Tseng PC; Yu P; Kuo HC; Shen CH; Shieh JM; Lin SH
    Opt Express; 2011 Jul; 19 Suppl 4():A757-62. PubMed ID: 21747544
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effective Light Trapping in Thin Film Silicon Solar Cells with Nano- and Microscale Structures on Glass Substrate.
    Bong S; Ahn S; Anh le HT; Kim S; Park H; Shin C; Park J; Lee Y; Yi J
    J Nanosci Nanotechnol; 2016 May; 16(5):4978-83. PubMed ID: 27483855
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Silicon Solar Cells on Glass with Power Conversion Efficiency above 13% at Thickness below 15 Micrometer.
    Sonntag P; Preissler N; Bokalič M; Trahms M; Haschke J; Schlatmann R; Topič M; Rech B; Amkreutz D
    Sci Rep; 2017 Apr; 7(1):873. PubMed ID: 28408763
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polycrystalline silicon thin-film solar cells with plasmonic-enhanced light-trapping.
    Varlamov S; Rao J; Soderstrom T
    J Vis Exp; 2012 Jul; (65):. PubMed ID: 22805108
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Post passivation light trapping back contacts for silicon heterojunction solar cells.
    Smeets M; Bittkau K; Lentz F; Richter A; Ding K; Carius R; Rau U; Paetzold UW
    Nanoscale; 2016 Nov; 8(44):18726-18733. PubMed ID: 27787533
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nano-optical designs for high-efficiency monolithic perovskite-silicon tandem solar cells.
    Tockhorn P; Sutter J; Cruz A; Wagner P; Jäger K; Yoo D; Lang F; Grischek M; Li B; Li J; Shargaieva O; Unger E; Al-Ashouri A; Köhnen E; Stolterfoht M; Neher D; Schlatmann R; Rech B; Stannowski B; Albrecht S; Becker C
    Nat Nanotechnol; 2022 Nov; 17(11):1214-1221. PubMed ID: 36280763
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimal light trapping in ultra-thin photonic crystal crystalline silicon solar cells.
    Mallick SB; Agrawal M; Peumans P
    Opt Express; 2010 Mar; 18(6):5691-706. PubMed ID: 20389585
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced photocurrent in thin-film amorphous silicon solar cells via shape controlled three-dimensional nanostructures.
    Hilali MM; Yang S; Miller M; Xu F; Banerjee S; Sreenivasan SV
    Nanotechnology; 2012 Oct; 23(40):405203. PubMed ID: 22997169
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient light trapping in inverted nanopyramid thin crystalline silicon membranes for solar cell applications.
    Mavrokefalos A; Han SE; Yerci S; Branham MS; Chen G
    Nano Lett; 2012 Jun; 12(6):2792-6. PubMed ID: 22612694
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical Study and Experimental Realization of Nanostructured Back Reflectors with Reduced Parasitic Losses for Silicon Thin Film Solar Cells.
    Li Z; E R; Lu C; Prakoso AB; Foldyna M; Khoury R; Bulkin P; Wang J; Chen W; Johnson E; Cabarrocas PIR
    Nanomaterials (Basel); 2018 Aug; 8(8):. PubMed ID: 30126184
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nano-Photonic Structures for Light Trapping in Ultra-Thin Crystalline Silicon Solar Cells.
    Pathi P; Peer A; Biswas R
    Nanomaterials (Basel); 2017 Jan; 7(1):. PubMed ID: 28336851
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A light-trapping structure based on BiO3 nano-islands with highly crystallized sputtered silicon for thin-film solar cells.
    Hu Q; Wang J; Zhao Y; Li D
    Opt Express; 2011 Jan; 19 Suppl 1():A20-7. PubMed ID: 21263708
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of nanoporous silicon layer to reduce the optical losses of crystalline silicon solar cells.
    Lee S; Lee E
    J Nanosci Nanotechnol; 2007 Nov; 7(11):3713-6. PubMed ID: 18047043
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical absorption enhancement in 3D silicon oxide nano-sandwich type solar cell.
    Kiani A; Venkatakrishnan K; Tan B
    Opt Express; 2014 Jan; 22 Suppl 1():A120-31. PubMed ID: 24921988
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.