These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 27065805)

  • 1. Developmental Profile of Ion Channel Specializations in the Avian Nucleus Magnocellularis.
    Hong H; Rollman L; Feinstein B; Sanchez JT
    Front Cell Neurosci; 2016; 10():80. PubMed ID: 27065805
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resurgent sodium current promotes action potential firing in the avian auditory brainstem.
    Hong H; Lu T; Wang X; Wang Y; Sanchez JT
    J Physiol; 2018 Feb; 596(3):423-443. PubMed ID: 29193076
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ion channel mechanisms underlying frequency-firing patterns of the avian nucleus magnocellularis: A computational model.
    Lu T; Wade K; Hong H; Sanchez JT
    Channels (Austin); 2017 Sep; 11(5):444-458. PubMed ID: 28481659
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diverse Intrinsic Properties Shape Functional Phenotype of Low-Frequency Neurons in the Auditory Brainstem.
    Hong H; Wang X; Lu T; Zorio DAR; Wang Y; Sanchez JT
    Front Cell Neurosci; 2018; 12():175. PubMed ID: 29997479
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Voltage-gated ionic currents and their roles in timing coding in auditory neurons of the nucleus magnocellularis of the chick.
    Koyano K; Funabiki K; Ohmori H
    Neurosci Res; 1996 Sep; 26(1):29-45. PubMed ID: 8895890
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of Neuronal Excitability of the Bushy Cells in Anteroventral Cochlear Nucleus of Rats.
    Feng Y; Zhang Q; Lu X; Li X; Liu W
    Dev Neurosci; 2022; 44(6):566-575. PubMed ID: 35863308
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Whole-cell and single-channel calcium currents in guinea pig basal forebrain neurons.
    Griffith WH; Taylor L; Davis MJ
    J Neurophysiol; 1994 Jun; 71(6):2359-76. PubMed ID: 7931521
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Early development of intrinsic and synaptic properties of chicken nucleus laminaris neurons.
    Gao H; Lu Y
    Neuroscience; 2008 Apr; 153(1):131-43. PubMed ID: 18355968
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of outward currents in neurons of the avian nucleus magnocellularis.
    Rathouz M; Trussell L
    J Neurophysiol; 1998 Dec; 80(6):2824-35. PubMed ID: 9862887
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Need for Speed and Precision: Structural and Functional Specialization in the Cochlear Nucleus of the Avian Auditory System.
    Hong H; Sanchez JT
    J Exp Neurosci; 2018; 12():1179069518815628. PubMed ID: 30559595
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Action potentials and underlying voltage-dependent currents studied in cultured spiral ganglion neurons of the postnatal gerbil.
    Lin X
    Hear Res; 1997 Jun; 108(1-2):157-79. PubMed ID: 9213129
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Voltage-gated potassium channels activated during action potentials in layer V neocortical pyramidal neurons.
    Kang J; Huguenard JR; Prince DA
    J Neurophysiol; 2000 Jan; 83(1):70-80. PubMed ID: 10634854
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Variations in the ensemble of potassium currents underlying resonance in turtle hair cells.
    Goodman MB; Art JJ
    J Physiol; 1996 Dec; 497 ( Pt 2)(Pt 2):395-412. PubMed ID: 8961183
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Depolarizing Na
    Higerd-Rusli GP; Alsaloum M; Tyagi S; Sarveswaran N; Estacion M; Akin EJ; Dib-Hajj FB; Liu S; Sosniak D; Zhao P; Dib-Hajj SD; Waxman SG
    J Neurosci; 2022 Jun; 42(24):4794-4811. PubMed ID: 35589395
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genistein Inhibits Aβ
    Wang YX; Xia ZH; Jiang X; Li LX; An D; Wang HG; Heng B; Liu YQ
    Cell Mol Neurobiol; 2019 Aug; 39(6):809-822. PubMed ID: 31037516
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Balanced Activity between Kv3 and Nav Channels Determines Fast-Spiking in Mammalian Central Neurons.
    Gu Y; Servello D; Han Z; Lalchandani RR; Ding JB; Huang K; Gu C
    iScience; 2018 Nov; 9():120-137. PubMed ID: 30390433
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tetrodotoxin-Sensitive Sodium Channels Mediate Action Potential Firing and Excitability in Menthol-Sensitive Vglut3-Lineage Sensory Neurons.
    Griffith TN; Docter TA; Lumpkin EA
    J Neurosci; 2019 Sep; 39(36):7086-7101. PubMed ID: 31300524
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Precise localizations of voltage-gated sodium and potassium channels in neurons.
    Misonou H
    Dev Neurobiol; 2018 Mar; 78(3):271-282. PubMed ID: 29218789
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low Somatic Sodium Conductance Enhances Action Potential Precision in Time-Coding Auditory Neurons.
    Yang Y; Ramamurthy B; Neef A; Xu-Friedman MA
    J Neurosci; 2016 Nov; 36(47):11999-12009. PubMed ID: 27881784
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intrinsic physiology of inhibitory neurons changes over auditory development.
    Carroll BJ; Bertram R; Hyson RL
    J Neurophysiol; 2018 Jan; 119(1):290-304. PubMed ID: 29046423
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.