BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

343 related articles for article (PubMed ID: 27065812)

  • 1. Intermittent Theta-Burst Transcranial Magnetic Stimulation Alters Electrical Properties of Fast-Spiking Neocortical Interneurons in an Age-Dependent Fashion.
    Hoppenrath K; Härtig W; Funke K
    Front Neural Circuits; 2016; 10():22. PubMed ID: 27065812
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reduction in cortical parvalbumin expression due to intermittent theta-burst stimulation correlates with maturation of the perineuronal nets in young rats.
    Mix A; Hoppenrath K; Funke K
    Dev Neurobiol; 2015 Jan; 75(1):1-11. PubMed ID: 24962557
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple blocks of intermittent and continuous theta-burst stimulation applied via transcranial magnetic stimulation differently affect sensory responses in rat barrel cortex.
    Thimm A; Funke K
    J Physiol; 2015 Feb; 593(4):967-85. PubMed ID: 25504571
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neuropeptide Y as a possible homeostatic element for changes in cortical excitability induced by repetitive transcranial magnetic stimulation.
    Jazmati D; Neubacher U; Funke K
    Brain Stimul; 2018; 11(4):797-805. PubMed ID: 29519725
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulation of inhibitory activity markers by intermittent theta-burst stimulation in rat cortex is NMDA-receptor dependent.
    Labedi A; Benali A; Mix A; Neubacher U; Funke K
    Brain Stimul; 2014; 7(3):394-400. PubMed ID: 24656783
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Continuous and intermittent transcranial magnetic theta burst stimulation modify tactile learning performance and cortical protein expression in the rat differently.
    Mix A; Benali A; Eysel UT; Funke K
    Eur J Neurosci; 2010 Nov; 32(9):1575-86. PubMed ID: 20950358
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theta-burst transcranial magnetic stimulation alters cortical inhibition.
    Benali A; Trippe J; Weiler E; Mix A; Petrasch-Parwez E; Girzalsky W; Eysel UT; Erdmann R; Funke K
    J Neurosci; 2011 Jan; 31(4):1193-203. PubMed ID: 21273404
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of chronic iTBS-rTMS and enriched environment on visual cortex early critical period and visual pattern discrimination in dark-reared rats.
    Castillo-Padilla DV; Funke K
    Dev Neurobiol; 2016 Jan; 76(1):19-33. PubMed ID: 25892203
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional and molecular development of striatal fast-spiking GABAergic interneurons and their cortical inputs.
    Plotkin JL; Wu N; Chesselet MF; Levine MS
    Eur J Neurosci; 2005 Sep; 22(5):1097-108. PubMed ID: 16176351
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Repetitive transcranial magnetic stimulation reverses reduced excitability of rat visual cortex induced by dark rearing during early critical period.
    Charles James J; Funke K
    Dev Neurobiol; 2020 Nov; 80(11-12):399-410. PubMed ID: 33006265
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dose-dependence of changes in cortical protein expression induced with repeated transcranial magnetic theta-burst stimulation in the rat.
    Volz LJ; Benali A; Mix A; Neubacher U; Funke K
    Brain Stimul; 2013 Jul; 6(4):598-606. PubMed ID: 23433874
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Feedforward inhibition of projection neurons by fast-spiking GABA interneurons in the rat striatum in vivo.
    Mallet N; Le Moine C; Charpier S; Gonon F
    J Neurosci; 2005 Apr; 25(15):3857-69. PubMed ID: 15829638
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synapse-associated protein 97 regulates the membrane properties of fast-spiking parvalbumin interneurons in the visual cortex.
    Akgul G; Wollmuth LP
    J Neurosci; 2013 Jul; 33(31):12739-50. PubMed ID: 23904610
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Repetitive transcranial magnetic stimulation recovers cortical map plasticity induced by sensory deprivation due to deafferentiation.
    Kloosterboer E; Funke K
    J Physiol; 2019 Aug; 597(15):4025-4051. PubMed ID: 31145483
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional properties of electrical synapses between inhibitory interneurons of neocortical layer 4.
    Gibson JR; Beierlein M; Connors BW
    J Neurophysiol; 2005 Jan; 93(1):467-80. PubMed ID: 15317837
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Statistical models suggest presence of two distinct subpopulations of miniature EPSCs in fast-spiking interneurons of rat prefrontal cortex.
    Malkin SL; Kim KK; Tikhonov DB; Magazanik LG; Zaitsev AV
    Neuroscience; 2015 Aug; 301():508-19. PubMed ID: 26118990
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strain differences in the effect of rTMS on cortical expression of calcium-binding proteins in rats.
    Mix A; Benali A; Funke K
    Exp Brain Res; 2014 Feb; 232(2):435-42. PubMed ID: 24202236
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cortical fast-spiking parvalbumin interneurons enwrapped in the perineuronal net express the metallopeptidases Adamts8, Adamts15 and Neprilysin.
    Rossier J; Bernard A; Cabungcal JH; Perrenoud Q; Savoye A; Gallopin T; Hawrylycz M; Cuénod M; Do K; Urban A; Lein ES
    Mol Psychiatry; 2015 Feb; 20(2):154-61. PubMed ID: 25510509
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cocaine Exposure Modulates Perineuronal Nets and Synaptic Excitability of Fast-Spiking Interneurons in the Medial Prefrontal Cortex.
    Slaker ML; Jorgensen ET; Hegarty DM; Liu X; Kong Y; Zhang F; Linhardt RJ; Brown TE; Aicher SA; Sorg BA
    eNeuro; 2018; 5(5):. PubMed ID: 30294670
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dopamine manipulation alters immediate-early gene response of striatal parvalbumin interneurons to cortical stimulation.
    Trevitt JT; Morrow J; Marshall JF
    Brain Res; 2005 Feb; 1035(1):41-50. PubMed ID: 15713275
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.