BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 27065875)

  • 1. Mitochondrial NAD(P)H In vivo: Identifying Natural Indicators of Oxidative Phosphorylation in the (31)P Magnetic Resonance Spectrum.
    Conley KE; Ali AS; Flores B; Jubrias SA; Shankland EG
    Front Physiol; 2016; 7():45. PubMed ID: 27065875
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatiotemporal compartmentalization of hepatic NADH and NADPH metabolism.
    Goodman RP; Calvo SE; Mootha VK
    J Biol Chem; 2018 May; 293(20):7508-7516. PubMed ID: 29514978
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NAD(H) and NADP(H) Redox Couples and Cellular Energy Metabolism.
    Xiao W; Wang RS; Handy DE; Loscalzo J
    Antioxid Redox Signal; 2018 Jan; 28(3):251-272. PubMed ID: 28648096
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Feasibility of Non-invasive Measurement of Tumour NAD(H) by In Vivo Phosphorus-31 Magnetic Resonance Spectroscopy.
    Nath K; Arias-Mendoza F; Xu HN; Gupta PK; Li LZ
    Adv Exp Med Biol; 2022; 1395():237-242. PubMed ID: 36527643
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Redox Dysregulation in Schizophrenia Revealed by in vivo NAD+/NADH Measurement.
    Kim SY; Cohen BM; Chen X; Lukas SE; Shinn AK; Yuksel AC; Li T; Du F; Öngür D
    Schizophr Bull; 2017 Jan; 43(1):197-204. PubMed ID: 27665001
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of Nicotinamide Adenine Dinucleotide in Human Tissues by In Vivo Phosphorus-31 Magnetic Resonance Spectroscopic Imaging at 1.5 Tesla.
    Arias-Mendoza F; Nath K; Xu HN; Gupta PK; Li LZ
    Adv Exp Med Biol; 2022; 1395():323-328. PubMed ID: 36527656
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-cell redox states analyzed by fluorescence lifetime metrics and tryptophan FRET interaction with NAD(P)H.
    Cao R; Wallrabe H; Siller K; Rehman Alam S; Periasamy A
    Cytometry A; 2019 Jan; 95(1):110-121. PubMed ID: 30604477
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Emerging therapeutic roles for NAD(+) metabolism in mitochondrial and age-related disorders.
    Srivastava S
    Clin Transl Med; 2016 Dec; 5(1):25. PubMed ID: 27465020
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A spontaneous mutation in the nicotinamide nucleotide transhydrogenase gene of C57BL/6J mice results in mitochondrial redox abnormalities.
    Ronchi JA; Figueira TR; Ravagnani FG; Oliveira HC; Vercesi AE; Castilho RF
    Free Radic Biol Med; 2013 Oct; 63():446-56. PubMed ID: 23747984
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Assessment of mitochondrial metabolic oxidative state in living cardiomyocytes with spectrally-resolved fluorescence lifetime spectroscopy of NAD(P)H].
    Cheng Y; Ren M; Niu Y; Qiao J; Aneba S; Chorvat D; Chorvatova A
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2009 Dec; 26(6):1191-200. PubMed ID: 20095467
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adenine Nucleotide and Nicotinamide Adenine Dinucleotide Measurements in Plants.
    Zhang Y; Krahnert I; Bolze A; Gibon Y; Fernie AR
    Curr Protoc Plant Biol; 2020 Sep; 5(3):e20115. PubMed ID: 32841544
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extraction and Quantitation of Nicotinamide Adenine Dinucleotide Redox Cofactors.
    Lu W; Wang L; Chen L; Hui S; Rabinowitz JD
    Antioxid Redox Signal; 2018 Jan; 28(3):167-179. PubMed ID: 28497978
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurement of mitochondrial NADH and FAD autofluorescence in live cells.
    Bartolomé F; Abramov AY
    Methods Mol Biol; 2015; 1264():263-70. PubMed ID: 25631020
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stable isotope labeling by essential nutrients in cell culture (SILEC) for accurate measurement of nicotinamide adenine dinucleotide metabolism.
    Frederick DW; Trefely S; Buas A; Goodspeed J; Singh J; Mesaros C; Baur JA; Snyder NW
    Analyst; 2017 Nov; 142(23):4431-4437. PubMed ID: 29072717
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intracellular redox state revealed by in vivo (31) P MRS measurement of NAD(+) and NADH contents in brains.
    Lu M; Zhu XH; Zhang Y; Chen W
    Magn Reson Med; 2014 Jun; 71(6):1959-72. PubMed ID: 23843330
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo (31) P MRS assessment of intracellular NAD metabolites and NAD(+) /NADH redox state in human brain at 4 T.
    Lu M; Zhu XH; Chen W
    NMR Biomed; 2016 Jul; 29(7):1010-7. PubMed ID: 27257783
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of angiotensin II on energetics, glucose metabolism and cytosolic NADH/NAD and NADPH/NADP redox in vascular smooth muscle.
    Barron JT; Sasse MF; Nair A
    Mol Cell Biochem; 2004 Jul; 262(1-2):91-9. PubMed ID: 15532713
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Brain bioenergetics and redox state measured by
    Chouinard VA; Kim SY; Valeri L; Yuksel C; Ryan KP; Chouinard G; Cohen BM; Du F; Öngür D
    Schizophr Res; 2017 Sep; 187():11-16. PubMed ID: 28258794
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The redox state of free nicotinamide-adenine dinucleotide in the cytoplasm and mitochondria of rat liver.
    Williamson DH; Lund P; Krebs HA
    Biochem J; 1967 May; 103(2):514-27. PubMed ID: 4291787
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolism of hyperpolarized
    Chen W; Sharma G; Jiang W; Maptue NR; Malloy CR; Sherry AD; Khemtong C
    NMR Biomed; 2019 Jun; 32(6):e4091. PubMed ID: 30968985
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.