These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 27066034)

  • 21. Multiple responses contribute to the enhanced drought tolerance of the autotetraploid Ziziphus jujuba Mill. var. spinosa.
    Li M; Zhang C; Hou L; Yang W; Liu S; Pang X; Li Y
    Cell Biosci; 2021 Jun; 11(1):119. PubMed ID: 34193297
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Salt stress responsiveness of a wild cotton species (Gossypium klotzschianum) based on transcriptomic analysis.
    Wei Y; Xu Y; Lu P; Wang X; Li Z; Cai X; Zhou Z; Wang Y; Zhang Z; Lin Z; Liu F; Wang K
    PLoS One; 2017; 12(5):e0178313. PubMed ID: 28552980
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transcriptome analysis of diploid and triploid
    Bian W; Liu X; Zhang Z; Zhang H
    PeerJ; 2020; 8():e10204. PubMed ID: 33194408
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Plant-Pathogen Interaction-Related MicroRNAs and Their Targets Provide Indicators of Phytoplasma Infection in Paulownia tomentosa × Paulownia fortunei.
    Fan G; Niu S; Xu T; Deng M; Zhao Z; Wang Y; Cao L; Wang Z
    PLoS One; 2015; 10(10):e0140590. PubMed ID: 26484670
    [TBL] [Abstract][Full Text] [Related]  

  • 25.
    Scarrow M; Chen N; Namaganda A; Sun G
    Physiol Mol Biol Plants; 2022 Dec; 28(11-12):2013-2021. PubMed ID: 36573150
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Proteome Profiling of Paulownia Seedlings Infected with Phytoplasma.
    Cao X; Fan G; Dong Y; Zhao Z; Deng M; Wang Z; Liu W
    Front Plant Sci; 2017; 8():342. PubMed ID: 28344590
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Understanding salt tolerance mechanism using transcriptome profiling and de novo assembly of wild tomato Solanum chilense.
    Kashyap SP; Prasanna HC; Kumari N; Mishra P; Singh B
    Sci Rep; 2020 Sep; 10(1):15835. PubMed ID: 32985535
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identification and characterization of long noncoding RNA in
    Wang Z; Li B; Li Y; Zhai X; Dong Y; Deng M; Zhao Z; Cao Y; Fan G
    Physiol Mol Biol Plants; 2018 Mar; 24(2):325-334. PubMed ID: 29515326
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transcriptome-based gene expression profiling of diploid radish (Raphanus sativus L.) and the corresponding autotetraploid.
    Cheng W; Tang M; Xie Y; Xu L; Wang Y; Luo X; Fan L; Liu L
    Mol Biol Rep; 2019 Feb; 46(1):933-945. PubMed ID: 30560406
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparative transcriptome analysis of NaCl and KCl stress response in Malus hupehensis Rehd. Provide insight into the regulation involved in Na
    Li Y; Zheng X; Tian Y; Ma C; Yang S; Wang C
    Plant Physiol Biochem; 2021 Jul; 164():101-114. PubMed ID: 33975146
    [TBL] [Abstract][Full Text] [Related]  

  • 31. RNA-seq for comparative transcript profiling of kenaf under salinity stress.
    Li H; Li D; Chen A; Tang H; Li J; Huang S
    J Plant Res; 2017 Mar; 130(2):365-372. PubMed ID: 27999968
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparison of leaf transcriptomes of cassava "Xinxuan 048" diploid and autotetraploid plants.
    Yin L; Qu J; Zhou H; Shang X; Fang H; Lu J; Yan H
    Genes Genomics; 2018 Sep; 40(9):927-935. PubMed ID: 30155710
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evaluating the Differential Response of Transcription Factors in Diploid versus Autotetraploid Rice Leaves Subjected to Diverse Saline-Alkali Stresses.
    Wang N; Wang Y; Wang C; Leng Z; Qi F; Wang S; Zhou Y; Meng W; Liu K; Zhang C; Ma J
    Genes (Basel); 2023 May; 14(6):. PubMed ID: 37372331
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Compatible solute, transporter protein, transcription factor, and hormone-related gene expression provides an indicator of drought stress in Paulownia fortunei.
    Dong Y; Fan G; Zhao Z; Deng M
    Funct Integr Genomics; 2014 Sep; 14(3):479-91. PubMed ID: 24801596
    [TBL] [Abstract][Full Text] [Related]  

  • 35. De novo transcriptome in roots of switchgrass (Panicum virgatum L.) reveals gene expression dynamic and act network under alkaline salt stress.
    Zhang P; Duo T; Wang F; Zhang X; Yang Z; Hu G
    BMC Genomics; 2021 Jan; 22(1):82. PubMed ID: 33509088
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transcriptome and Metabonomic Analysis of
    Chen Y; Zhang S; Du S; Jiang J; Wang G
    Genes (Basel); 2022 Jul; 13(8):. PubMed ID: 35893048
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transcriptome-based gene expression profiling identifies differentially expressed genes critical for salt stress response in radish (Raphanus sativus L.).
    Sun X; Xu L; Wang Y; Luo X; Zhu X; Kinuthia KB; Nie S; Feng H; Li C; Liu L
    Plant Cell Rep; 2016 Feb; 35(2):329-46. PubMed ID: 26518430
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transcript profiling reveals an important role of cell wall remodeling and hormone signaling under salt stress in garlic.
    Wang GL; Ren XQ; Liu JX; Yang F; Wang YP; Xiong AS
    Plant Physiol Biochem; 2019 Feb; 135():87-98. PubMed ID: 30529171
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identification of novel and salt-responsive miRNAs to explore miRNA-mediated regulatory network of salt stress response in radish (Raphanus sativus L.).
    Sun X; Xu L; Wang Y; Yu R; Zhu X; Luo X; Gong Y; Wang R; Limera C; Zhang K; Liu L
    BMC Genomics; 2015 Mar; 16(1):197. PubMed ID: 25888374
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Transcriptomic profiling and analysis of differentially expressed genes in asparagus bean (Vigna unguiculata ssp. sesquipedalis) under salt stress.
    Pan L; Yu X; Shao J; Liu Z; Gao T; Zheng Y; Zeng C; Liang C; Chen C
    PLoS One; 2019; 14(7):e0219799. PubMed ID: 31299052
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.