These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 27066061)
1. Identification of Arbuscular Mycorrhiza (AM)-Responsive microRNAs in Tomato. Wu P; Wu Y; Liu CC; Liu LW; Ma FF; Wu XY; Wu M; Hang YY; Chen JQ; Shao ZQ; Wang B Front Plant Sci; 2016; 7():429. PubMed ID: 27066061 [TBL] [Abstract][Full Text] [Related]
2. Identification of Arbuscular Mycorrhiza Fungi Responsive microRNAs and Their Regulatory Network in Maize. Xu Y; Zhu S; Liu F; Wang W; Wang X; Han G; Cheng B Int J Mol Sci; 2018 Oct; 19(10):. PubMed ID: 30332850 [TBL] [Abstract][Full Text] [Related]
3. NIN Is Involved in the Regulation of Arbuscular Mycorrhizal Symbiosis. Guillotin B; Couzigou JM; Combier JP Front Plant Sci; 2016; 7():1704. PubMed ID: 27899928 [TBL] [Abstract][Full Text] [Related]
4. Effect of Root Colonization by Arbuscular Mycorrhizal Fungi on Growth, Productivity and Blast Resistance in Rice. Campo S; Martín-Cardoso H; Olivé M; Pla E; Catala-Forner M; Martínez-Eixarch M; San Segundo B Rice (N Y); 2020 Jun; 13(1):42. PubMed ID: 32572623 [TBL] [Abstract][Full Text] [Related]
5. Identification of microRNAs responsive to arbuscular mycorrhizal fungi in Panicum virgatum (switchgrass). Johnson AC; Pendergast TH; Chaluvadi S; Bennetzen JL; Devos KM BMC Genomics; 2022 Oct; 23(1):688. PubMed ID: 36199042 [TBL] [Abstract][Full Text] [Related]
6. An improved method for Ho-Plágaro T; Huertas R; Tamayo-Navarrete MI; Ocampo JA; García-Garrido JM Plant Methods; 2018; 14():34. PubMed ID: 29760765 [TBL] [Abstract][Full Text] [Related]
7. The Rice Qa-SNAREs in SYP13 Subfamily Are Involved in Regulating Arbuscular Mycorrhizal Symbiosis and Seed Fertility. Liu YN; Liu CC; Guo R; Tian L; Cheng JF; Wu YN; Wang D; Wang B Front Plant Sci; 2022; 13():898286. PubMed ID: 35665185 [TBL] [Abstract][Full Text] [Related]
8. The plasma membrane proteome of Medicago truncatula roots as modified by arbuscular mycorrhizal symbiosis. Aloui A; Recorbet G; Lemaître-Guillier C; Mounier A; Balliau T; Zivy M; Wipf D; Dumas-Gaudot E Mycorrhiza; 2018 Jan; 28(1):1-16. PubMed ID: 28725961 [TBL] [Abstract][Full Text] [Related]
9. Tomato LysM Receptor-Like Kinase SlLYK12 Is Involved in Arbuscular Mycorrhizal Symbiosis. Liao D; Sun X; Wang N; Song F; Liang Y Front Plant Sci; 2018; 9():1004. PubMed ID: 30050553 [TBL] [Abstract][Full Text] [Related]
10. RNA-seq Transcriptional Profiling of an Arbuscular Mycorrhiza Provides Insights into Regulated and Coordinated Gene Expression in Lotus japonicus and Rhizophagus irregularis. Handa Y; Nishide H; Takeda N; Suzuki Y; Kawaguchi M; Saito K Plant Cell Physiol; 2015 Aug; 56(8):1490-511. PubMed ID: 26009592 [TBL] [Abstract][Full Text] [Related]
11. Host- and stage-dependent secretome of the arbuscular mycorrhizal fungus Rhizophagus irregularis. Zeng T; Holmer R; Hontelez J; Te Lintel-Hekkert B; Marufu L; de Zeeuw T; Wu F; Schijlen E; Bisseling T; Limpens E Plant J; 2018 May; 94(3):411-425. PubMed ID: 29570877 [TBL] [Abstract][Full Text] [Related]
13. Combining metabolomics and gene expression analysis reveals that propionyl- and butyryl-carnitines are involved in late stages of arbuscular mycorrhizal symbiosis. Laparre J; Malbreil M; Letisse F; Portais JC; Roux C; Bécard G; Puech-Pagès V Mol Plant; 2014 Mar; 7(3):554-66. PubMed ID: 24121293 [TBL] [Abstract][Full Text] [Related]
14. Aquaporin gene expression and physiological responses of Robinia pseudoacacia L. to the mycorrhizal fungus Rhizophagus irregularis and drought stress. He F; Zhang H; Tang M Mycorrhiza; 2016 May; 26(4):311-23. PubMed ID: 26590998 [TBL] [Abstract][Full Text] [Related]
15. Identification of microRNAs in six solanaceous plants and their potential link with phosphate and mycorrhizal signaling. Gu M; Liu W; Meng Q; Zhang W; Chen A; Sun S; Xu G J Integr Plant Biol; 2014 Dec; 56(12):1164-78. PubMed ID: 24975554 [TBL] [Abstract][Full Text] [Related]
16. SWEET transporters of Medicago lupulina in the arbuscular-mycorrhizal system in the presence of medium level of available phosphorus. Kryukov AA; Gorbunova AO; Kudriashova TR; Ivanchenko OB; Shishova MF; Yurkov AP Vavilovskii Zhurnal Genet Selektsii; 2023 Jun; 27(3):189-196. PubMed ID: 37293443 [TBL] [Abstract][Full Text] [Related]
17. Arbuscular mycorrhiza Symbiosis Induces a Major Transcriptional Reprogramming of the Potato SWEET Sugar Transporter Family. Manck-Götzenberger J; Requena N Front Plant Sci; 2016; 7():487. PubMed ID: 27148312 [TBL] [Abstract][Full Text] [Related]
18. Expression pattern suggests a role of MiR399 in the regulation of the cellular response to local Pi increase during arbuscular mycorrhizal symbiosis. Branscheid A; Sieh D; Pant BD; May P; Devers EA; Elkrog A; Schauser L; Scheible WR; Krajinski F Mol Plant Microbe Interact; 2010 Jul; 23(7):915-26. PubMed ID: 20521954 [TBL] [Abstract][Full Text] [Related]
19. Strigolactone-Induced Putative Secreted Protein 1 Is Required for the Establishment of Symbiosis by the Arbuscular Mycorrhizal Fungus Rhizophagus irregularis. Tsuzuki S; Handa Y; Takeda N; Kawaguchi M Mol Plant Microbe Interact; 2016 Apr; 29(4):277-86. PubMed ID: 26757243 [TBL] [Abstract][Full Text] [Related]
20. Complex regulation of microRNAs in roots of competitively-grown isogenic Nicotiana attenuata plants with different capacities to interact with arbuscular mycorrhizal fungi. Pandey P; Wang M; Baldwin IT; Pandey SP; Groten K BMC Genomics; 2018 Dec; 19(1):937. PubMed ID: 30558527 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]