These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

341 related articles for article (PubMed ID: 27066062)

  • 1. EM Adaptive LASSO-A Multilocus Modeling Strategy for Detecting SNPs Associated with Zero-inflated Count Phenotypes.
    Mallick H; Tiwari HK
    Front Genet; 2016; 7():32. PubMed ID: 27066062
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the use of zero-inflated and hurdle models for modeling vaccine adverse event count data.
    Rose CE; Martin SW; Wannemuehler KA; Plikaytis BD
    J Biopharm Stat; 2006; 16(4):463-81. PubMed ID: 16892908
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Variable selection for zero-inflated and overdispersed data with application to health care demand in Germany.
    Wang Z; Ma S; Wang CY
    Biom J; 2015 Sep; 57(5):867-84. PubMed ID: 26059498
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On performance of parametric and distribution-free models for zero-inflated and over-dispersed count responses.
    Tang W; Lu N; Chen T; Wang W; Gunzler DD; Han Y; Tu XM
    Stat Med; 2015 Oct; 34(24):3235-45. PubMed ID: 26078035
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Risk factor selection in rate making: EM adaptive LASSO for zero-inflated poisson regression models.
    Tang Y; Xiang L; Zhu Z
    Risk Anal; 2014 Jun; 34(6):1112-27. PubMed ID: 24433227
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two-part zero-inflated negative binomial regression model for quantitative trait loci mapping with count trait.
    Moghimbeigi A
    J Theor Biol; 2015 May; 372():74-80. PubMed ID: 25728790
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bivariate zero-inflated regression for count data: a Bayesian approach with application to plant counts.
    Majumdar A; Gries C
    Int J Biostat; 2010; 6(1):Article 27. PubMed ID: 21969981
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparison of statistical methods for modeling count data with an application to hospital length of stay.
    Fernandez GA; Vatcheva KP
    BMC Med Res Methodol; 2022 Aug; 22(1):211. PubMed ID: 35927612
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using zero-inflated and hurdle regression models to analyze schistosomiasis data of school children in the southern areas of Ghana.
    Nketia K; de Souza DK
    PLoS One; 2024; 19(7):e0304681. PubMed ID: 38995915
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multilevel modeling in single-case studies with zero-inflated and overdispersed count data.
    Li H; Luo W; Baek E
    Behav Res Methods; 2024 Apr; 56(4):2765-2781. PubMed ID: 38383801
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analyzing hospitalization data: potential limitations of Poisson regression.
    Weaver CG; Ravani P; Oliver MJ; Austin PC; Quinn RR
    Nephrol Dial Transplant; 2015 Aug; 30(8):1244-9. PubMed ID: 25813274
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GEE type inference for clustered zero-inflated negative binomial regression with application to dental caries.
    Kong M; Xu S; Levy SM; Datta S
    Comput Stat Data Anal; 2015 May; 85():54-66. PubMed ID: 25620827
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A simulation study of the performance of statistical models for count outcomes with excessive zeros.
    Zhou Z; Li D; Huh D; Xie M; Mun EY
    Stat Med; 2024 Oct; 43(24):4752-4767. PubMed ID: 39193779
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distribution-free Inference of Zero-inated Binomial Data for Longitudinal Studies.
    He H; Wang WJ; Hu J; Gallop R; Crits-Christoph P; Xia YL
    J Appl Stat; 2015 Oct; 42(10):2203-2219. PubMed ID: 26435563
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Models for analyzing zero-inflated and overdispersed count data: an application to cigarette and marijuana use.
    Pittman B; Buta E; Krishnan-Sarin S; O'Malley SS; Liss T; Gueorguieva R
    Nicotine Tob Res; 2018 Apr; 22(8):1390-8. PubMed ID: 29912423
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A GEE-type approach to untangle structural and random zeros in predictors.
    Ye P; Tang W; He J; He H
    Stat Methods Med Res; 2019 Dec; 28(12):3683-3696. PubMed ID: 30472921
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The utility of the zero-inflated Poisson and zero-inflated negative binomial models: a case study of cross-sectional and longitudinal DMF data examining the effect of socio-economic status.
    Lewsey JD; Thomson WM
    Community Dent Oral Epidemiol; 2004 Jun; 32(3):183-9. PubMed ID: 15151688
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimation for zero-inflated over-dispersed count data model with missing response.
    Mian R; Paul S
    Stat Med; 2016 Dec; 35(30):5603-5624. PubMed ID: 27582395
    [TBL] [Abstract][Full Text] [Related]  

  • 19. What statistical method should be used to evaluate risk factors associated with dmfs index? Evidence from the National Pathfinder Survey of 4-year-old Italian children.
    Solinas G; Campus G; Maida C; Sotgiu G; Cagetti MG; Lesaffre E; Castiglia P
    Community Dent Oral Epidemiol; 2009 Dec; 37(6):539-46. PubMed ID: 19845715
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study of Zero-Inflated Regression Models in a Large-Scale Population Survey of Sub-Health Status and Its Influencing Factors.
    Xu T; Zhu GJ; Han SM
    Chin Med Sci J; 2017 Dec; 32(4):218-225. PubMed ID: 29301596
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.