These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 27066108)

  • 61. A Deep Learning Enhanced Novel Software Tool for Laryngeal Dynamics Analysis.
    Kist AM; Gómez P; Dubrovskiy D; Schlegel P; Kunduk M; Echternach M; Patel R; Semmler M; Bohr C; Dürr S; Schützenberger A; Döllinger M
    J Speech Lang Hear Res; 2021 Jun; 64(6):1889-1903. PubMed ID: 34000199
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Spatiotemporal Quantification of Vocal Fold Vibration After Exposure to Superficial Laryngeal Dehydration: A Preliminary Study.
    Patel RR; Walker R; Sivasankar PM
    J Voice; 2016 Jul; 30(4):427-33. PubMed ID: 26277075
    [TBL] [Abstract][Full Text] [Related]  

  • 63. The effects of frequency and intensity level on glottal closure in normal subjects.
    Sulter AM; Albers FW
    Clin Otolaryngol Allied Sci; 1996 Aug; 21(4):324-7. PubMed ID: 8889298
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Laryngeal stroboscopy-Normative values for amplitude, open quotient, asymmetry and phase difference in young adults.
    Sielska-Badurek EM; Jędra K; Sobol M; Niemczyk K; Osuch-Wójcikiewicz E
    Clin Otolaryngol; 2019 Mar; 44(2):158-165. PubMed ID: 30353981
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Classification of functional voice disorders based on phonovibrograms.
    Voigt D; Döllinger M; Braunschweig T; Yang A; Eysholdt U; Lohscheller J
    Artif Intell Med; 2010 May; 49(1):51-9. PubMed ID: 20138486
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Computation of physiological human vocal fold parameters by mathematical optimization of a biomechanical model.
    Yang A; Stingl M; Berry DA; Lohscheller J; Voigt D; Eysholdt U; Dollinger M
    J Acoust Soc Am; 2011 Aug; 130(2):948-64. PubMed ID: 21877808
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Glottal open quotient in singing: measurements and correlation with laryngeal mechanisms, vocal intensity, and fundamental frequency.
    Henrich N; D'Alessandro C; Doval B; Castellengo M
    J Acoust Soc Am; 2005 Mar; 117(3 Pt 1):1417-30. PubMed ID: 15807029
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Vocal fold vibration in simulated head voice phonation in excised canine larynges.
    Shiotani A; Fukuda H; Kawaida M; Kanzaki J
    Eur Arch Otorhinolaryngol; 1996; 253(6):356-63. PubMed ID: 8858261
    [TBL] [Abstract][Full Text] [Related]  

  • 69. The effects of the false vocal fold gaps on intralaryngeal pressure distributions and their effects on phonation.
    Li S; Wan M; Wang S
    Sci China C Life Sci; 2008 Nov; 51(11):1045-51. PubMed ID: 18989648
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Laryngeal biomechanics: an overview of mucosal wave mechanics.
    Berke GS; Gerratt BR
    J Voice; 1993 Jun; 7(2):123-8. PubMed ID: 8353625
    [TBL] [Abstract][Full Text] [Related]  

  • 71. High-speed registration of phonation-related glottal area variation during artificial lengthening of the vocal tract.
    Laukkanen AM; Pulakka H; Alku P; Vilkman E; Hertegård S; Lindestad PA; Larsson H; Granqvist S
    Logoped Phoniatr Vocol; 2007; 32(4):157-64. PubMed ID: 17917980
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Influence of glottal closure configuration on vocal efficacy in young normal-speaking women.
    Schneider B; Bigenzahn W
    J Voice; 2003 Dec; 17(4):468-80. PubMed ID: 14740929
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Strobophotoglottographic transillumination as a method for the analysis of vocal fold vibration patterns.
    Hess MM; Ludwigs M
    J Voice; 2000 Jun; 14(2):255-71. PubMed ID: 10875578
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Vocal-fold collision mass as a differentiator between registers in the low-pitch range.
    Vilkman E; Alku P; Laukkanen AM
    J Voice; 1995 Mar; 9(1):66-73. PubMed ID: 7757152
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Resonance tube phonation in water: High-speed imaging, electroglottographic and oral pressure observations of vocal fold vibrations--a pilot study.
    Granqvist S; Simberg S; Hertegård S; Holmqvist S; Larsson H; Lindestad PÅ; Södersten M; Hammarberg B
    Logoped Phoniatr Vocol; 2015 Oct; 40(3):113-21. PubMed ID: 24865620
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Model-based classification of nonstationary vocal fold vibrations.
    Wurzbacher T; Schwarz R; Döllinger M; Hoppe U; Eysholdt U; Lohscheller J
    J Acoust Soc Am; 2006 Aug; 120(2):1012-27. PubMed ID: 16938988
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Vocal fold vibrations: high-speed imaging, kymography, and acoustic analysis: a preliminary report.
    Larsson H; Hertegård S; Lindestad PA; Hammarberg B
    Laryngoscope; 2000 Dec; 110(12):2117-22. PubMed ID: 11129033
    [TBL] [Abstract][Full Text] [Related]  

  • 78. The influence of source-filter interaction on the voice source in a three-dimensional computational model of voice production.
    Zhang Z
    J Acoust Soc Am; 2023 Oct; 154(4):2462-2475. PubMed ID: 37855666
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Biomechanical modeling of the three-dimensional aspects of human vocal fold dynamics.
    Yang A; Lohscheller J; Berry DA; Becker S; Eysholdt U; Voigt D; Döllinger M
    J Acoust Soc Am; 2010 Feb; 127(2):1014-31. PubMed ID: 20136223
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Changes in glottal configuration in women after loud talking.
    Linville SE
    J Voice; 1995 Mar; 9(1):57-65. PubMed ID: 7757151
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.