BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 27066749)

  • 21. Structural and biochemical studies of human lysine methyltransferase Smyd3 reveal the important functional roles of its post-SET and TPR domains and the regulation of its activity by DNA binding.
    Xu S; Wu J; Sun B; Zhong C; Ding J
    Nucleic Acids Res; 2011 May; 39(10):4438-49. PubMed ID: 21266482
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Selective, Small-Molecule Co-Factor Binding Site Inhibition of a Su(var)3-9, Enhancer of Zeste, Trithorax Domain Containing Lysine Methyltransferase.
    Taylor AP; Swewczyk M; Kennedy S; Trush VV; Wu H; Zeng H; Dong A; Ferreira de Freitas R; Tatlock J; Kumpf RA; Wythes M; Casimiro-Garcia A; Denny RA; Parikh MD; Li F; Barsyte-Lovejoy D; Schapira M; Vedadi M; Brown PJ; Arrowsmith CH; Owen DR
    J Med Chem; 2019 Sep; 62(17):7669-7683. PubMed ID: 31415173
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The lysine 831 of vascular endothelial growth factor receptor 1 is a novel target of methylation by SMYD3.
    Kunizaki M; Hamamoto R; Silva FP; Yamaguchi K; Nagayasu T; Shibuya M; Nakamura Y; Furukawa Y
    Cancer Res; 2007 Nov; 67(22):10759-65. PubMed ID: 18006819
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Discovery of an Allosteric Ligand Binding Site in SMYD3 Lysine Methyltransferase.
    Talibov VO; Fabini E; FitzGerald EA; Tedesco D; Cederfeldt D; Talu MJ; Rachman MM; Mihalic F; Manoni E; Naldi M; Sanese P; Forte G; Lepore Signorile M; Barril X; Simone C; Bartolini M; Dobritzsch D; Del Rio A; Danielson UH
    Chembiochem; 2021 May; 22(9):1597-1608. PubMed ID: 33400854
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Conformational Dynamics of Lysine Methyltransferase Smyd2. Insights into the Different Substrate Crevice Characteristics of Smyd2 and Smyd3.
    Chandramouli B; Chillemi G
    J Chem Inf Model; 2016 Dec; 56(12):2467-2475. PubMed ID: 27959541
    [TBL] [Abstract][Full Text] [Related]  

  • 26. SMYD3-mediated lysine methylation in the PH domain is critical for activation of AKT1.
    Yoshioka Y; Suzuki T; Matsuo Y; Nakakido M; Tsurita G; Simone C; Watanabe T; Dohmae N; Nakamura Y; Hamamoto R
    Oncotarget; 2016 Nov; 7(46):75023-75037. PubMed ID: 27626683
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The telomerase reverse transcriptase (hTERT) gene is a direct target of the histone methyltransferase SMYD3.
    Liu C; Fang X; Ge Z; Jalink M; Kyo S; Björkholm M; Gruber A; Sjöberg J; Xu D
    Cancer Res; 2007 Mar; 67(6):2626-31. PubMed ID: 17363582
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Exploration of the Substrate Preference of Lysine Methyltransferase SMYD3 by Molecular Dynamics Simulations.
    Sun J; Shi F; Yang N
    ACS Omega; 2019 Nov; 4(22):19573-19581. PubMed ID: 31788587
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Delineating the active site architecture of G9a lysine methyltransferase through substrate and inhibitor binding mode analysis: a molecular dynamics study.
    Ramya Chandar Charles M; Hsieh HP; Selvaraj Coumar M
    J Biomol Struct Dyn; 2019 Jul; 37(10):2581-2592. PubMed ID: 30047835
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Smyd3 regulates cancer cell phenotypes and catalyzes histone H4 lysine 5 methylation.
    Van Aller GS; Reynoird N; Barbash O; Huddleston M; Liu S; Zmoos AF; McDevitt P; Sinnamon R; Le B; Mas G; Annan R; Sage J; Garcia BA; Tummino PJ; Gozani O; Kruger RG
    Epigenetics; 2012 Apr; 7(4):340-3. PubMed ID: 22419068
    [TBL] [Abstract][Full Text] [Related]  

  • 31. S-adenosyl methionine is necessary for inhibition of the methyltransferase G9a by the lysine 9 to methionine mutation on histone H3.
    Jayaram H; Hoelper D; Jain SU; Cantone N; Lundgren SM; Poy F; Allis CD; Cummings R; Bellon S; Lewis PW
    Proc Natl Acad Sci U S A; 2016 May; 113(22):6182-7. PubMed ID: 27185940
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structural and functional profiling of the human histone methyltransferase SMYD3.
    Foreman KW; Brown M; Park F; Emtage S; Harriss J; Das C; Zhu L; Crew A; Arnold L; Shaaban S; Tucker P
    PLoS One; 2011; 6(7):e22290. PubMed ID: 21779408
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enhanced methyltransferase activity of SMYD3 by the cleavage of its N-terminal region in human cancer cells.
    Silva FP; Hamamoto R; Kunizaki M; Tsuge M; Nakamura Y; Furukawa Y
    Oncogene; 2008 Apr; 27(19):2686-92. PubMed ID: 17998933
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development of novel bisubstrate-type inhibitors of histone methyltransferase SET7/9.
    Mori S; Iwase K; Iwanami N; Tanaka Y; Kagechika H; Hirano T
    Bioorg Med Chem; 2010 Dec; 18(23):8158-66. PubMed ID: 21036620
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification and Characterizations of Novel, Selective Histone Methyltransferase SET7 Inhibitors by Scaffold Hopping- and 2D-Molecular Fingerprint-Based Similarity Search.
    Ding H; Lu WC; Hu JC; Liu YC; Zhang CH; Lian FL; Zhang NX; Meng FW; Luo C; Chen KX
    Molecules; 2018 Mar; 23(3):. PubMed ID: 29498708
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Design of a fluorescent ligand targeting the S-adenosylmethionine binding site of the histone methyltransferase MLL1.
    Luan Y; Blazer LL; Hu H; Hajian T; Zhang J; Wu H; Houliston S; Arrowsmith CH; Vedadi M; Zheng YG
    Org Biomol Chem; 2016 Jan; 14(2):631-638. PubMed ID: 26541578
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Smyd3-associated regulatory pathways in cancer.
    Giakountis A; Moulos P; Sarris ME; Hatzis P; Talianidis I
    Semin Cancer Biol; 2017 Feb; 42():70-80. PubMed ID: 27554136
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Discovery of a chemical probe for PRDM9.
    Allali-Hassani A; Szewczyk MM; Ivanochko D; Organ SL; Bok J; Ho JSY; Gay FPH; Li F; Blazer L; Eram MS; Halabelian L; Dilworth D; Luciani GM; Lima-Fernandes E; Wu Q; Loppnau P; Palmer N; Talib SZA; Brown PJ; Schapira M; Kaldis P; O'Hagan RC; Guccione E; Barsyte-Lovejoy D; Arrowsmith CH; Sanders JM; Kattar SD; Bennett DJ; Nicholson B; Vedadi M
    Nat Commun; 2019 Dec; 10(1):5759. PubMed ID: 31848333
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Discovery of the 4-aminopiperidine-based compound EM127 for the site-specific covalent inhibition of SMYD3.
    Parenti MD; Naldi M; Manoni E; Fabini E; Cederfelt D; Talibov VO; Gressani V; Guven U; Grossi V; Fasano C; Sanese P; De Marco K; Shtil AA; Kurkin AV; Altieri A; Danielson UH; Caretti G; Simone C; Varchi G; Bartolini M; Del Rio A
    Eur J Med Chem; 2022 Dec; 243():114683. PubMed ID: 36116234
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Small molecule inhibitors and CRISPR/Cas9 mutagenesis demonstrate that SMYD2 and SMYD3 activity are dispensable for autonomous cancer cell proliferation.
    Thomenius MJ; Totman J; Harvey D; Mitchell LH; Riera TV; Cosmopoulos K; Grassian AR; Klaus C; Foley M; Admirand EA; Jahic H; Majer C; Wigle T; Jacques SL; Gureasko J; Brach D; Lingaraj T; West K; Smith S; Rioux N; Waters NJ; Tang C; Raimondi A; Munchhof M; Mills JE; Ribich S; Porter Scott M; Kuntz KW; Janzen WP; Moyer M; Smith JJ; Chesworth R; Copeland RA; Boriack-Sjodin PA
    PLoS One; 2018; 13(6):e0197372. PubMed ID: 29856759
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.