BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 27066749)

  • 41. Small molecule inhibitors and CRISPR/Cas9 mutagenesis demonstrate that SMYD2 and SMYD3 activity are dispensable for autonomous cancer cell proliferation.
    Thomenius MJ; Totman J; Harvey D; Mitchell LH; Riera TV; Cosmopoulos K; Grassian AR; Klaus C; Foley M; Admirand EA; Jahic H; Majer C; Wigle T; Jacques SL; Gureasko J; Brach D; Lingaraj T; West K; Smith S; Rioux N; Waters NJ; Tang C; Raimondi A; Munchhof M; Mills JE; Ribich S; Porter Scott M; Kuntz KW; Janzen WP; Moyer M; Smith JJ; Chesworth R; Copeland RA; Boriack-Sjodin PA
    PLoS One; 2018; 13(6):e0197372. PubMed ID: 29856759
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Discovery of a 2,4-diamino-7-aminoalkoxyquinazoline as a potent and selective inhibitor of histone lysine methyltransferase G9a.
    Liu F; Chen X; Allali-Hassani A; Quinn AM; Wasney GA; Dong A; Barsyte D; Kozieradzki I; Senisterra G; Chau I; Siarheyeva A; Kireev DB; Jadhav A; Herold JM; Frye SV; Arrowsmith CH; Brown PJ; Simeonov A; Vedadi M; Jin J
    J Med Chem; 2009 Dec; 52(24):7950-3. PubMed ID: 19891491
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Identification of a peptide inhibitor for the histone methyltransferase WHSC1.
    Morrison MJ; Boriack-Sjodin PA; Swinger KK; Wigle TJ; Sadalge D; Kuntz KW; Scott MP; Janzen WP; Chesworth R; Duncan KW; Harvey DM; Lampe JW; Mitchell LH; Copeland RA
    PLoS One; 2018; 13(5):e0197082. PubMed ID: 29742153
    [TBL] [Abstract][Full Text] [Related]  

  • 44. SMYD3 contributes to a more aggressive phenotype of prostate cancer and targets Cyclin D2 through H4K20me3.
    Vieira FQ; Costa-Pinheiro P; Almeida-Rios D; Graça I; Monteiro-Reis S; Simões-Sousa S; Carneiro I; Sousa EJ; Godinho MI; Baltazar F; Henrique R; Jerónimo C
    Oncotarget; 2015 May; 6(15):13644-57. PubMed ID: 25980436
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Discovery of novel small molecule inhibitors of lysine methyltransferase G9a and their mechanism in leukemia cell lines.
    Kondengaden SM; Luo LF; Huang K; Zhu M; Zang L; Bataba E; Wang R; Luo C; Wang B; Li KK; Wang PG
    Eur J Med Chem; 2016 Oct; 122():382-393. PubMed ID: 27393948
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A SMYD3 Small-Molecule Inhibitor Impairing Cancer Cell Growth.
    Peserico A; Germani A; Sanese P; Barbosa AJ; Di Virgilio V; Fittipaldi R; Fabini E; Bertucci C; Varchi G; Moyer MP; Caretti G; Del Rio A; Simone C
    J Cell Physiol; 2015 Oct; 230(10):2447-2460. PubMed ID: 25728514
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Novobiocin decreases SMYD3 expression and inhibits the migration of MDA-MB-231 human breast cancer cells.
    Luo XG; Zou JN; Wang SZ; Zhang TC; Xi T
    IUBMB Life; 2010 Mar; 62(3):194-9. PubMed ID: 20039369
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Nucleosome Binding Alters the Substrate Bonding Environment of Histone H3 Lysine 36 Methyltransferase NSD2.
    Poulin MB; Schneck JL; Matico RE; Hou W; McDevitt PJ; Holbert M; Schramm VL
    J Am Chem Soc; 2016 Jun; 138(21):6699-702. PubMed ID: 27183271
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Enhanced SMYD3 expression is essential for the growth of breast cancer cells.
    Hamamoto R; Silva FP; Tsuge M; Nishidate T; Katagiri T; Nakamura Y; Furukawa Y
    Cancer Sci; 2006 Feb; 97(2):113-8. PubMed ID: 16441421
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Discovery of tetrahydrofuranyl spirooxindole-based SMYD3 inhibitors against gastric cancer via inducing lethal autophagy.
    Zhu HP; Chai J; Qin R; Leng HJ; Wen X; Peng C; He G; Han B
    Eur J Med Chem; 2023 Jan; 246():115009. PubMed ID: 36527933
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Structural basis of substrate methylation and inhibition of SMYD2.
    Ferguson AD; Larsen NA; Howard T; Pollard H; Green I; Grande C; Cheung T; Garcia-Arenas R; Cowen S; Wu J; Godin R; Chen H; Keen N
    Structure; 2011 Sep; 19(9):1262-73. PubMed ID: 21782458
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Design, Synthesis, and Biological Activity of Substrate Competitive SMYD2 Inhibitors.
    Cowen SD; Russell D; Dakin LA; Chen H; Larsen NA; Godin R; Throner S; Zheng X; Molina A; Wu J; Cheung T; Howard T; Garcia-Arenas R; Keen N; Pendleton CS; Pietenpol JA; Ferguson AD
    J Med Chem; 2016 Dec; 59(24):11079-11097. PubMed ID: 28002961
    [TBL] [Abstract][Full Text] [Related]  

  • 53. (R)-PFI-2 is a potent and selective inhibitor of SETD7 methyltransferase activity in cells.
    Barsyte-Lovejoy D; Li F; Oudhoff MJ; Tatlock JH; Dong A; Zeng H; Wu H; Freeman SA; Schapira M; Senisterra GA; Kuznetsova E; Marcellus R; Allali-Hassani A; Kennedy S; Lambert JP; Couzens AL; Aman A; Gingras AC; Al-Awar R; Fish PV; Gerstenberger BS; Roberts L; Benn CL; Grimley RL; Braam MJ; Rossi FM; Sudol M; Brown PJ; Bunnage ME; Owen DR; Zaph C; Vedadi M; Arrowsmith CH
    Proc Natl Acad Sci U S A; 2014 Sep; 111(35):12853-8. PubMed ID: 25136132
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Novel insights into SMYD2 and SMYD3 inhibitors: from potential anti-tumoural therapy to a variety of new applications.
    Rubio-Tomás T
    Mol Biol Rep; 2021 Nov; 48(11):7499-7508. PubMed ID: 34510321
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Biological evaluation of tanshindiols as EZH2 histone methyltransferase inhibitors.
    Woo J; Kim HY; Byun BJ; Chae CH; Lee JY; Ryu SY; Park WK; Cho H; Choi G
    Bioorg Med Chem Lett; 2014 Jun; 24(11):2486-92. PubMed ID: 24767850
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Structural Analysis of SMYD3 Lysine Methyltransferase for the Development of Competitive and Specific Enzyme Inhibitors.
    Jarrell DK; Hassell KN; Alshiraihi I; Crans DC; Brown MA
    Diseases; 2021 Dec; 10(1):. PubMed ID: 35076487
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Structure-Activity Relationship Studies on (R)-PFI-2 Analogues as Inhibitors of Histone Lysine Methyltransferase SETD7.
    Lenstra DC; Damen E; Leenders RGG; Blaauw RH; Rutjes FPJT; Wegert A; Mecinović J
    ChemMedChem; 2018 Jul; 13(14):1405-1413. PubMed ID: 29869845
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Catalytic properties and kinetic mechanism of human recombinant Lys-9 histone H3 methyltransferase SUV39H1: participation of the chromodomain in enzymatic catalysis.
    Chin HG; Patnaik D; Estève PO; Jacobsen SE; Pradhan S
    Biochemistry; 2006 Mar; 45(10):3272-84. PubMed ID: 16519522
    [TBL] [Abstract][Full Text] [Related]  

  • 59. SMYD3-NY, a novel SMYD3 mRNA transcript variant, may have a role in human spermatogenesis.
    Zhou Z; Ren X; Huang X; Lu L; Xu M; Yin L; Li J; Sha J
    Ann Clin Lab Sci; 2005; 35(3):270-7. PubMed ID: 16081583
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Detecting S-adenosyl-L-methionine-induced conformational change of a histone methyltransferase using a homogeneous time-resolved fluorescence-based binding assay.
    Lin Y; Fan H; Frederiksen M; Zhao K; Jiang L; Wang Z; Zhou S; Guo W; Gao J; Li S; Harrington E; Meier P; Scheufler C; Xu YC; Atadja P; Lu C; Li E; Gu XJ
    Anal Biochem; 2012 Apr; 423(1):171-7. PubMed ID: 22342622
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.