BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 27066977)

  • 21. Is Nanoclustering essential for all oncogenic KRas pathways? Can it explain why wild-type KRas can inhibit its oncogenic variant?
    Nussinov R; Tsai CJ; Jang H
    Semin Cancer Biol; 2019 Feb; 54():114-120. PubMed ID: 29307569
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Phosphorylation of SOS1 on tyrosine 1196 promotes its RAC GEF activity and contributes to BCR-ABL leukemogenesis.
    Gerboth S; Frittoli E; Palamidessi A; Baltanas FC; Salek M; Rappsilber J; Giuliani C; Troglio F; Rolland Y; Pruneri G; Kreutmair S; Pallavicini I; Zobel M; Cinquanta M; Minucci S; Gomez C; Santos E; Illert AL; Scita G
    Leukemia; 2018 Mar; 32(3):820-827. PubMed ID: 28819285
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structural basis of the atypical activation mechanism of KRAS
    Bera AK; Lu J; Wales TE; Gondi S; Gurbani D; Nelson A; Engen JR; Westover KD
    J Biol Chem; 2019 Sep; 294(38):13964-13972. PubMed ID: 31341022
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An oncogenic KRAS transcription program activates the RHOGEF ARHGEF2 to mediate transformed phenotypes in pancreatic cancer.
    Kent OA; Sandí MJ; Burston HE; Brown KR; Rottapel R
    Oncotarget; 2017 Jan; 8(3):4484-4500. PubMed ID: 27835861
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Interaction of a novel fluorescent GTP analogue with the small G-protein K-Ras.
    Iwata S; Masuhara K; Umeki N; Sako Y; Maruta S
    J Biochem; 2016 Jan; 159(1):41-8. PubMed ID: 26184075
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mechanism of the guanine nucleotide exchange reaction of Ras GTPase--evidence for a GTP/GDP displacement model.
    Zhang B; Zhang Y; Shacter E; Zheng Y
    Biochemistry; 2005 Feb; 44(7):2566-76. PubMed ID: 15709769
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High-Affinity Interaction of the K-Ras4B Hypervariable Region with the Ras Active Site.
    Chavan TS; Jang H; Khavrutskii L; Abraham SJ; Banerjee A; Freed BC; Johannessen L; Tarasov SG; Gaponenko V; Nussinov R; Tarasova NI
    Biophys J; 2015 Dec; 109(12):2602-2613. PubMed ID: 26682817
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reduced HRAS G12V-Driven Tumorigenesis of Cell Lines Expressing KRAS C118S.
    Huang L; Counter CM
    PLoS One; 2015; 10(4):e0123918. PubMed ID: 25902334
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ras-15A protein shares highly similar dominant-negative biological properties with Ras-17N and forms a stable, guanine-nucleotide resistant complex with CDC25 exchange factor.
    Chen SY; Huff SY; Lai CC; Der CJ; Powers S
    Oncogene; 1994 Sep; 9(9):2691-8. PubMed ID: 8058333
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Alternate mechanisms of ras activation are complementary and favor and formation of ras-GTP.
    Patel G; MacDonald MJ; Khosravi-Far R; Hisaka MM; Der CJ
    Oncogene; 1992 Feb; 7(2):283-8. PubMed ID: 1549350
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Small Molecule-Mediated Activation of RAS Elicits Biphasic Modulation of Phospho-ERK Levels that Are Regulated through Negative Feedback on SOS1.
    Howes JE; Akan DT; Burns MC; Rossanese OW; Waterson AG; Fesik SW
    Mol Cancer Ther; 2018 May; 17(5):1051-1060. PubMed ID: 29440291
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Activation of RalA is critical for Ras-induced tumorigenesis of human cells.
    Lim KH; Baines AT; Fiordalisi JJ; Shipitsin M; Feig LA; Cox AD; Der CJ; Counter CM
    Cancer Cell; 2005 Jun; 7(6):533-45. PubMed ID: 15950903
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Oncogenic Kras requires simultaneous PI3K signaling to induce ERK activation and transform thyroid epithelial cells in vivo.
    Miller KA; Yeager N; Baker K; Liao XH; Refetoff S; Di Cristofano A
    Cancer Res; 2009 Apr; 69(8):3689-94. PubMed ID: 19351816
    [TBL] [Abstract][Full Text] [Related]  

  • 34. RACK1 regulates Ki-Ras-mediated signaling and morphological transformation of NIH 3T3 cells.
    Bjørndal B; Myklebust LM; Rosendal KR; Myromslien FD; Lorens JB; Nolan G; Bruland O; Lillehaug JR
    Int J Cancer; 2007 Mar; 120(5):961-9. PubMed ID: 17149700
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparison of liver oncogenic potential among human RAS isoforms.
    Chung SI; Moon H; Ju HL; Kim DY; Cho KJ; Ribback S; Dombrowski F; Calvisi DF; Ro SW
    Oncotarget; 2016 Feb; 7(6):7354-66. PubMed ID: 26799184
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Anti-Influenza Activity of the Ribonuclease Binase: Cellular Targets Detected by Quantitative Proteomics.
    Ulyanova V; Shah Mahmud R; Laikov A; Dudkina E; Markelova M; Mostafa A; Pleschka S; Ilinskaya O
    Int J Mol Sci; 2020 Nov; 21(21):. PubMed ID: 33167434
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The G protein signaling regulator RGS3 enhances the GTPase activity of KRAS.
    Li C; Vides A; Kim D; Xue JY; Zhao Y; Lito P
    Science; 2021 Oct; 374(6564):197-201. PubMed ID: 34618566
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Saccharomyces cerevisiae gene product SDC25 C-domain functions as an oncoprotein in NIH3T3 cells.
    Barlat I; Schweighoffer F; Chevallier-Multon MC; Duchesne M; Fath I; Landais D; Jacquet M; Tocque B
    Oncogene; 1993 Jan; 8(1):215-8. PubMed ID: 7999142
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Andrographolide derivatives inhibit guanine nucleotide exchange and abrogate oncogenic Ras function.
    Hocker HJ; Cho KJ; Chen CY; Rambahal N; Sagineedu SR; Shaari K; Stanslas J; Hancock JF; Gorfe AA
    Proc Natl Acad Sci U S A; 2013 Jun; 110(25):10201-6. PubMed ID: 23737504
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Design of Small Molecules That Compete with Nucleotide Binding to an Engineered Oncogenic KRAS Allele.
    Zhang Y; Larraufie MH; Musavi L; Akkiraju H; Brown LM; Stockwell BR
    Biochemistry; 2018 Feb; 57(8):1380-1389. PubMed ID: 29313669
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.