These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
294 related articles for article (PubMed ID: 27067186)
21. Interactions between voluntary and stimulus-driven spatial attention mechanisms across sensory modalities. Santangelo V; Olivetti Belardinelli M; Spence C; Macaluso E J Cogn Neurosci; 2009 Dec; 21(12):2384-97. PubMed ID: 19199406 [TBL] [Abstract][Full Text] [Related]
22. Electroencephalographic activity associated with shifts of visuospatial attention. Yamaguchi S; Tsuchiya H; Kobayashi S Brain; 1994 Jun; 117 ( Pt 3)():553-62. PubMed ID: 8032865 [TBL] [Abstract][Full Text] [Related]
23. Attentional orienting induced by arrows and eye-gaze compared with an endogenous cue. Brignani D; Guzzon D; Marzi CA; Miniussi C Neuropsychologia; 2009 Jan; 47(2):370-81. PubMed ID: 18926835 [TBL] [Abstract][Full Text] [Related]
24. Age-related changes in the attentional control of visual cortex: a selective problem in the left visual hemifield. Nagamatsu LS; Carolan P; Liu-Ambrose TY; Handy TC Neuropsychologia; 2011 Jun; 49(7):1670-8. PubMed ID: 21356222 [TBL] [Abstract][Full Text] [Related]
25. Leftward bias in orienting to and disengaging attention from salient task-irrelevant events in rapid serial visual presentation. Śmigasiewicz K; Westphal N; Verleger R Neuropsychologia; 2017 Jan; 94():96-105. PubMed ID: 27916671 [TBL] [Abstract][Full Text] [Related]
26. rTMS-induced virtual lesion of the posterior parietal cortex (PPC) alters the control of reflexive shifts of social attention triggered by pointing hands. Porciello G; Crostella F; Liuzza MT; Valentini E; Aglioti SM Neuropsychologia; 2014 Jul; 59():148-56. PubMed ID: 24813151 [TBL] [Abstract][Full Text] [Related]
27. Attentional processes in typically developing children as revealed using brain event-related potentials and their source localization in Attention Network Test. Santhana Gopalan PR; Loberg O; Hämäläinen JA; Leppänen PHT Sci Rep; 2019 Feb; 9(1):2940. PubMed ID: 30814533 [TBL] [Abstract][Full Text] [Related]
28. Cue-locked lateralized components in a tactile spatial attention task: Evidence for a functional dissociation between ADAN and LSN. Gherri E; Gooray E; Forster B Psychophysiology; 2016 Apr; 53(4):507-17. PubMed ID: 26695445 [TBL] [Abstract][Full Text] [Related]
29. The influence of the global/local probability effect on the neural processing of cues and targets. A functional systems approach. Arjona A; Rodríguez E; Morales M; Gómez CM Int J Psychophysiol; 2018 Dec; 134():52-61. PubMed ID: 30342061 [TBL] [Abstract][Full Text] [Related]
30. Spatial attention triggered by eye gaze enhances and speeds up visual processing in upper and lower visual fields beyond early striate visual processing. Schuller AM; Rossion B Clin Neurophysiol; 2005 Nov; 116(11):2565-76. PubMed ID: 16221564 [TBL] [Abstract][Full Text] [Related]
31. EEG Correlates of Preparatory Orienting, Contextual Updating, and Inhibition of Sensory Processing in Left Spatial Neglect. Lasaponara S; D'Onofrio M; Pinto M; Dragone A; Menicagli D; Bueti D; De Lucia M; Tomaiuolo F; Doricchi F J Neurosci; 2018 Apr; 38(15):3792-3808. PubMed ID: 29555852 [TBL] [Abstract][Full Text] [Related]
33. Pushing attention to one side: Force field adaptation alters neural correlates of orienting and disengagement of spatial attention. Reuter EM; Mattingley JB; Cunnington R; Riek S; Carroll TJ Eur J Neurosci; 2019 Jan; 49(1):120-136. PubMed ID: 30408253 [TBL] [Abstract][Full Text] [Related]
34. Hemifield-specific Correlations between Cue-related Blood Oxygen Level Dependent Activity in Bilateral Nodes of the Dorsal Attention Network and Attentional Benefits in a Spatial Orienting Paradigm. Mayrhofer HC; Duecker F; van de Ven V; Jacobs HIL; Sack AT J Cogn Neurosci; 2019 May; 31(5):625-638. PubMed ID: 30240311 [TBL] [Abstract][Full Text] [Related]
36. Faster, more intense! The relation between electrophysiological reflections of attentional orienting, sensory gain control, and speed of responding. Talsma D; Mulckhuyse M; Slagter HA; Theeuwes J Brain Res; 2007 Oct; 1178():92-105. PubMed ID: 17931607 [TBL] [Abstract][Full Text] [Related]
37. How microsaccades relate to lateralized ERP components of spatial attention: A co-registration study. Meyberg S; Sommer W; Dimigen O Neuropsychologia; 2017 May; 99():64-80. PubMed ID: 28254651 [TBL] [Abstract][Full Text] [Related]
38. Commonalities and differences in the spatiotemporal neural dynamics associated with automatic attentional shifts induced by gaze and arrows. Uono S; Sato W; Kochiyama T Neurosci Res; 2014 Oct; 87():56-65. PubMed ID: 25064015 [TBL] [Abstract][Full Text] [Related]
39. Control mechanisms mediating shifts of attention in auditory and visual space: a spatio-temporal ERP analysis. Green JJ; Teder-Sälejärvi WA; McDonald JJ Exp Brain Res; 2005 Oct; 166(3-4):358-69. PubMed ID: 16075294 [TBL] [Abstract][Full Text] [Related]
40. Cue validity modulates the neural correlates of covert endogenous orienting of attention in parietal and frontal cortex. Vossel S; Thiel CM; Fink GR Neuroimage; 2006 Sep; 32(3):1257-64. PubMed ID: 16846742 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]