These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
255 related articles for article (PubMed ID: 27067248)
1. Plasmonic near-touching titanium oxide nanoparticles to realize solar energy harvesting and effective local heating. Yan J; Liu P; Ma C; Lin Z; Yang G Nanoscale; 2016 Apr; 8(16):8826-38. PubMed ID: 27067248 [TBL] [Abstract][Full Text] [Related]
2. Plasmon resonances in semiconductor materials for detecting photocatalysis at the single-particle level. Yan J; Lin Z; Ma C; Zheng Z; Liu P; Yang G Nanoscale; 2016 Aug; 8(32):15001-7. PubMed ID: 27469299 [TBL] [Abstract][Full Text] [Related]
3. Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation. Zhou L; Tan Y; Ji D; Zhu B; Zhang P; Xu J; Gan Q; Yu Z; Zhu J Sci Adv; 2016 Apr; 2(4):e1501227. PubMed ID: 27152335 [TBL] [Abstract][Full Text] [Related]
4. Gap-plasmon based broadband absorbers for enhanced hot-electron and photocurrent generation. Lu Y; Dong W; Chen Z; Pors A; Wang Z; Bozhevolnyi SI Sci Rep; 2016 Jul; 6():30650. PubMed ID: 27470207 [TBL] [Abstract][Full Text] [Related]
5. Plasmonic heating from indium nanoparticles on a floating microporous membrane for enhanced solar seawater desalination. Zhang L; Xing J; Wen X; Chai J; Wang S; Xiong Q Nanoscale; 2017 Sep; 9(35):12843-12849. PubMed ID: 28832043 [TBL] [Abstract][Full Text] [Related]
6. Ultra-Broadband Refractory All-Metal Metamaterial Selective Absorber for Solar Thermal Energy Conversion. Qi B; Chen W; Niu T; Mei Z Nanomaterials (Basel); 2021 Jul; 11(8):. PubMed ID: 34443702 [TBL] [Abstract][Full Text] [Related]
7. Large-scale, broadband absorber based on three-dimensional aluminum nanospike arrays substrate for surface plasmon induced hot electrons photodetection. Zhai Y; Chen G; Ji J; Ma X; Wu Z; Li Y; Wang Q Nanotechnology; 2019 Sep; 30(37):375201. PubMed ID: 31082806 [TBL] [Abstract][Full Text] [Related]
8. The optical duality of tellurium nanoparticles for broadband solar energy harvesting and efficient photothermal conversion. Ma C; Yan J; Huang Y; Wang C; Yang G Sci Adv; 2018 Aug; 4(8):eaas9894. PubMed ID: 30105303 [TBL] [Abstract][Full Text] [Related]
9. A Scalable Nickel-Cellulose Hybrid Metamaterial with Broadband Light Absorption for Efficient Solar Distillation. Yuan Y; Dong C; Gu J; Liu Q; Xu J; Zhou C; Song G; Chen W; Yao L; Zhang D Adv Mater; 2020 Apr; 32(17):e1907975. PubMed ID: 32159267 [TBL] [Abstract][Full Text] [Related]
10. Solar Steam Generation and Desalination Using Ultra-Broadband Absorption in Plasmonic Alumina Nanowire Haze Structure-Graphene Oxide-Gold Nanoparticle Composite. Behera S; Kim C; Kim K Langmuir; 2020 Oct; 36(42):12494-12503. PubMed ID: 33049134 [TBL] [Abstract][Full Text] [Related]
11. Solar hydrogen generation by a CdS-Au-TiO2 sandwich nanorod array enhanced with Au nanoparticle as electron relay and plasmonic photosensitizer. Li J; Cushing SK; Zheng P; Senty T; Meng F; Bristow AD; Manivannan A; Wu N J Am Chem Soc; 2014 Jun; 136(23):8438-49. PubMed ID: 24836347 [TBL] [Abstract][Full Text] [Related]
12. Plasmon-Enhanced Light Absorption Below the Bandgap of Semiconducting SnS Cheng P; Wang H; Wang H; Wang D; van Aken PA; Schaaf P Small; 2024 Nov; 20(45):e2400588. PubMed ID: 39073231 [TBL] [Abstract][Full Text] [Related]
13. Plasmon-Driven Catalysis on Molecules and Nanomaterials. Zhang Z; Zhang C; Zheng H; Xu H Acc Chem Res; 2019 Sep; 52(9):2506-2515. PubMed ID: 31424904 [TBL] [Abstract][Full Text] [Related]
14. Automatically acquired broadband plasmonic-metamaterial black absorber during the metallic film-formation. Liu Z; Liu X; Huang S; Pan P; Chen J; Liu G; Gu G ACS Appl Mater Interfaces; 2015 Mar; 7(8):4962-8. PubMed ID: 25679790 [TBL] [Abstract][Full Text] [Related]
15. Ultra-Broadband Perfect Absorber based on Titanium Nanoarrays for Harvesting Solar Energy. Song D; Zhang K; Qian M; Liu Y; Wu X; Yu K Nanomaterials (Basel); 2022 Dec; 13(1):. PubMed ID: 36616001 [TBL] [Abstract][Full Text] [Related]
16. Hot Carrier Extraction with Plasmonic Broadband Absorbers. Ng C; Cadusch JJ; Dligatch S; Roberts A; Davis TJ; Mulvaney P; Gómez DE ACS Nano; 2016 Apr; 10(4):4704-11. PubMed ID: 26982625 [TBL] [Abstract][Full Text] [Related]
17. Titanium Oxynitride Spheres with Broad Plasmon Resonance for Solar Seawater Desalination. Cheng X; Bai X; Yang J; Zhu XM; Wang J ACS Appl Mater Interfaces; 2022 Jun; 14(25):28769-28780. PubMed ID: 35704447 [TBL] [Abstract][Full Text] [Related]
18. Refractory Ultra-Broadband Perfect Absorber from Visible to Near-Infrared. Gao H; Peng W; Chu S; Cui W; Liu Z; Yu L; Jing Z Nanomaterials (Basel); 2018 Dec; 8(12):. PubMed ID: 30545120 [TBL] [Abstract][Full Text] [Related]
19. Numerical study of an ultra-broadband near-perfect solar absorber in the visible and near-infrared region. Wu D; Liu C; Liu Y; Yu L; Yu Z; Chen L; Ma R; Ye H Opt Lett; 2017 Feb; 42(3):450-453. PubMed ID: 28146499 [TBL] [Abstract][Full Text] [Related]
20. Efficient Solar-Thermal Energy Harvest Driven by Interfacial Plasmonic Heating-Assisted Evaporation. Chang C; Yang C; Liu Y; Tao P; Song C; Shang W; Wu J; Deng T ACS Appl Mater Interfaces; 2016 Sep; 8(35):23412-8. PubMed ID: 27537862 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]