BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 27067648)

  • 1. Burkholderia cepacia lipase is a promising biocatalyst for biofuel production.
    Sasso F; Natalello A; Castoldi S; Lotti M; Santambrogio C; Grandori R
    Biotechnol J; 2016 Jul; 11(7):954-60. PubMed ID: 27067648
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of methanol on a methanol-tolerant bacterial lipase.
    Santambrogio C; Sasso F; Natalello A; Brocca S; Grandori R; Doglia SM; Lotti M
    Appl Microbiol Biotechnol; 2013 Oct; 97(19):8609-18. PubMed ID: 23371296
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Esterification activity and conformation studies of Burkholderia cepacia lipase in conventional organic solvents, ionic liquids and their co-solvent mixture media.
    Pan S; Liu X; Xie Y; Yi Y; Li C; Yan Y; Liu Y
    Bioresour Technol; 2010 Dec; 101(24):9822-4. PubMed ID: 20713309
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Filling the Void: Introducing Aromatic Interactions into Solvent Tunnels To Enhance Lipase Stability in Methanol.
    Gihaz S; Kanteev M; Pazy Y; Fishman A
    Appl Environ Microbiol; 2018 Dec; 84(23):. PubMed ID: 30217852
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Burkholderia cepacia lipase immobilized on heterofunctional magnetic nanoparticles and its application in biodiesel synthesis.
    Li K; Fan Y; He Y; Zeng L; Han X; Yan Y
    Sci Rep; 2017 Nov; 7(1):16473. PubMed ID: 29184106
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of methanol on lipases: molecular, kinetic and process issues in the production of biodiesel.
    Lotti M; Pleiss J; Valero F; Ferrer P
    Biotechnol J; 2015 Jan; 10(1):22-30. PubMed ID: 25046365
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hierarchical ZIF-8 toward Immobilizing
    Adnan M; Li K; Wang J; Xu L; Yan Y
    Int J Mol Sci; 2018 May; 19(5):. PubMed ID: 29747462
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A lipase with broad solvent stability from Burkholderia cepacia RQ3: isolation, characteristics and application for chiral resolution of 1-phenylethanol.
    Xie C; Wu B; Qin S; He B
    Bioprocess Biosyst Eng; 2016 Jan; 39(1):59-66. PubMed ID: 26497492
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved Performance of Lipase Immobilized on Tannic Acid-Templated Mesoporous Silica Nanoparticles.
    Jiang Y; Sun W; Zhou L; Ma L; He Y; Gao J
    Appl Biochem Biotechnol; 2016 Aug; 179(7):1155-69. PubMed ID: 27011329
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biodiesel synthesis and conformation of lipase from Burkholderia cepacia in room temperature ionic liquids and organic solvents.
    Liu Y; Chen D; Yan Y; Peng C; Xu L
    Bioresour Technol; 2011 Nov; 102(22):10414-8. PubMed ID: 21955878
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biodiesel production from Jatropha oil catalyzed by immobilized Burkholderia cepacia lipase on modified attapulgite.
    You Q; Yin X; Zhao Y; Zhang Y
    Bioresour Technol; 2013 Nov; 148():202-7. PubMed ID: 24055964
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The crystal structure of a triacylglycerol lipase from Pseudomonas cepacia reveals a highly open conformation in the absence of a bound inhibitor.
    Kim KK; Song HK; Shin DH; Hwang KY; Suh SW
    Structure; 1997 Feb; 5(2):173-85. PubMed ID: 9032073
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural insights into methanol-stable variants of lipase T6 from Geobacillus stearothermophilus.
    Dror A; Kanteev M; Kagan I; Gihaz S; Shahar A; Fishman A
    Appl Microbiol Biotechnol; 2015 Nov; 99(22):9449-61. PubMed ID: 26026940
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stability of lipases in miniemulsion systems: Correlation between secondary structure and activity.
    Pfluck ACD; de Barros DPC; Fonseca LP; Melo EP
    Enzyme Microb Technol; 2018 Jul; 114():7-14. PubMed ID: 29685356
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Burkholderia cepacia lipase: A versatile catalyst in synthesis reactions.
    Sánchez DA; Tonetto GM; Ferreira ML
    Biotechnol Bioeng; 2018 Jan; 115(1):6-24. PubMed ID: 28941272
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced catalytic stability of lipase immobilized on oxidized and disulfide-rich eggshell membrane for esters hydrolysis and transesterification.
    Jiang C; Cheng C; Hao M; Wang H; Wang Z; Shen C; Cheong LZ
    Int J Biol Macromol; 2017 Dec; 105(Pt 1):1328-1336. PubMed ID: 28768186
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Can an inactivating agent increase enzyme activity in organic solvent? Effects of 18-crown-6 on lipase activity, enantioselectivity, and conformation.
    Secundo F; Barletta GL; Dumitriu E; Carrea G
    Biotechnol Bioeng; 2007 May; 97(1):12-8. PubMed ID: 17096426
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solvent Stability Study with Thermodynamic Analysis and Superior Biocatalytic Activity of Burkholderia cepacia Lipase Immobilized on Biocompatible Hybrid Matrix of Poly(vinyl alcohol) and Hypromellose.
    Badgujar KC; Bhanage BM
    J Phys Chem B; 2014 Dec; 118(51):14808-19. PubMed ID: 25474503
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mono- and disaccharides enhance the activity and enantioselectivity of Burkholderia cepacia lipase in organic solvent but do not significantly affect its conformation.
    Secundo F; Carrea G
    Biotechnol Bioeng; 2005 Nov; 92(4):438-46. PubMed ID: 16028297
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Purification and properties of the alkaline lipase from Burkholderia cepacia A.T.C.C. 25609.
    Dalal S; Singh PK; Raghava S; Rawat S; Gupta MN
    Biotechnol Appl Biochem; 2008 Sep; 51(Pt 1):23-31. PubMed ID: 18052929
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.