BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 27067648)

  • 21. Screening of Lipases with Unusual High Activity in the sn-2 Esterification of 1,3-Dicaprin under Mild Operating Conditions.
    Sánchez DA; Tonetto GM; Ferreira ML
    J Agric Food Chem; 2017 Jun; 65(24):5010-5017. PubMed ID: 28573851
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of sub- and supercritical CO2 treatment on the properties of Pseudomonas cepacia lipase.
    Chen D; Zhang H; Xu J; Yan Y
    Enzyme Microb Technol; 2013 Jul; 53(2):110-7. PubMed ID: 23769311
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enzymatic transesterification of waste vegetable oil to produce biodiesel.
    Lopresto CG; Naccarato S; Albo L; De Paola MG; Chakraborty S; Curcio S; Calabrò V
    Ecotoxicol Environ Saf; 2015 Nov; 121():229-35. PubMed ID: 25838070
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Insights into lid movements of Burkholderia cepacia lipase inferred from molecular dynamics simulations.
    Barbe S; Lafaquière V; Guieysse D; Monsan P; Remaud-Siméon M; André I
    Proteins; 2009 Nov; 77(3):509-23. PubMed ID: 19475702
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Production of biodiesel by Burkholderia cepacia lipase as a function of process parameters.
    Ostojčić M; Budžaki S; Flanjak I; Bilić Rajs B; Barišić I; Tran NN; Hessel V; Strelec I
    Biotechnol Prog; 2021 Mar; 37(2):e3109. PubMed ID: 33314760
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optimization of the parameters that affect the synthesis of magnetic copolymer styrene-divinilbezene to be used as efficient matrix for immobilizing lipases.
    Silva MVC; Aguiar LG; de Castro HF; Freitas L
    World J Microbiol Biotechnol; 2018 Nov; 34(11):169. PubMed ID: 30406564
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Molecular mechanism of enzyme tolerance against organic solvents: Insights from molecular dynamics simulation.
    Mohtashami M; Fooladi J; Haddad-Mashadrizeh A; Housaindokht MR; Monhemi H
    Int J Biol Macromol; 2019 Feb; 122():914-923. PubMed ID: 30445665
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enzyme Immobilized on Nanoporous Carbon Derived from Metal-Organic Framework: A New Support for Biodiesel Synthesis.
    Liu LH; Shih YH; Liu WL; Lin CH; Huang HY
    ChemSusChem; 2017 Apr; 10(7):1364-1369. PubMed ID: 28195433
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Copper Phthalocyanine Improving Nonaqueous Catalysis of Pseudomonas cepacia Lipase for Ester Synthesis.
    Liu X; Cong F; Han M; Zhang L; Wang Z; Jiang L; Liu B; Zhang S; Yang W; Su Y; Li T; Wang Y; Liu D
    Appl Biochem Biotechnol; 2024 Apr; 196(4):1786-1802. PubMed ID: 37368171
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synthesis of propyl benzoate by solvent-free immobilized lipase-catalyzed transesterification: Optimization and kinetic modeling.
    Jawale PV; Bhanage BM
    Bioprocess Biosyst Eng; 2021 Feb; 44(2):369-378. PubMed ID: 32997184
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Carbon nanotube filled with magnetic iron oxide and modified with polyamidoamine dendrimers for immobilizing lipase toward application in biodiesel production.
    Fan Y; Su F; Li K; Ke C; Yan Y
    Sci Rep; 2017 Mar; 7():45643. PubMed ID: 28358395
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Co-Expression of a Thermally Stable and Methanol-Resistant Lipase and Its Chaperone from Burkholderia cepacia G63 in Escherichia coli.
    Zhang J; Tian M; Chen X; Lv P; Luo W; Wang Z; Xu J; Wang Z
    Appl Biochem Biotechnol; 2021 Mar; 193(3):717-729. PubMed ID: 33184764
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enzymatic transesterification of coconut oil by using immobilized lipase on biochar: An experimental and molecular docking study.
    Almeida LC; Barbosa MS; de Jesus FA; Santos RM; Fricks AT; Freitas LS; Pereira MM; Lima ÁS; Soares CMF
    Biotechnol Appl Biochem; 2021 Aug; 68(4):801-808. PubMed ID: 33180374
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A chemically modified lipase preparation for catalyzing the transesterification reaction in even highly polar organic solvents.
    Solanki K; Gupta MN
    Bioorg Med Chem Lett; 2011 May; 21(10):2934-6. PubMed ID: 21463943
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Guanidine hydrochloride-induced denaturation of Pseudomonas cepacia lipase.
    Tanaka A; Okuda K; Senoo K; Obata H; Inouye K
    J Biochem; 1999 Aug; 126(2):382-6. PubMed ID: 10423533
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Advances in lipase-catalyzed esterification reactions.
    Stergiou PY; Foukis A; Filippou M; Koukouritaki M; Parapouli M; Theodorou LG; Hatziloukas E; Afendra A; Pandey A; Papamichael EM
    Biotechnol Adv; 2013 Dec; 31(8):1846-59. PubMed ID: 23954307
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular mechanism of activation of Burkholderia cepacia lipase at aqueous-organic interfaces.
    de Oliveira IP; Jara GE; Martínez L
    Phys Chem Chem Phys; 2017 Nov; 19(46):31499-31507. PubMed ID: 29160871
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Deactivation and unfolding are uncoupled in a bacterial lipase exposed to heat, low pH and organic solvents.
    Invernizzi G; Casiraghi L; Grandori R; Lotti M
    J Biotechnol; 2009 Apr; 141(1-2):42-6. PubMed ID: 19428729
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biotechnological production of biodiesel fuel using biocatalysed transesterification: A review.
    Parawira W
    Crit Rev Biotechnol; 2009; 29(2):82-93. PubMed ID: 19412829
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Design for preparation of more active cross-linked enzyme aggregates of Burkholderia cepacia lipase using palm fiber residue.
    Alves NR; Pereira MM; Giordano RLC; Tardioli PW; Lima ÁS; Soares CMF; Souza RL
    Bioprocess Biosyst Eng; 2021 Jan; 44(1):57-66. PubMed ID: 32767112
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.