These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 27067713)

  • 41. Stressed out symbiotes: hypotheses for the influence of abiotic stress on arbuscular mycorrhizal fungi.
    Millar NS; Bennett AE
    Oecologia; 2016 Nov; 182(3):625-41. PubMed ID: 27350364
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Phosphorus, arbuscular mycorrhizal fungi and performance of the wetland plant Lythrum salicaria L. under inundated conditions.
    Stevens KJ; Spender SW; Peterson RL
    Mycorrhiza; 2002 Dec; 12(6):277-83. PubMed ID: 12466914
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Selection of appropriate host plants used in trap culture of arbuscular mycorrhizal fungi.
    Liu R; Wang F
    Mycorrhiza; 2003 Jun; 13(3):123-7. PubMed ID: 12687445
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Characterisation of microbial communities colonising the hyphal surfaces of arbuscular mycorrhizal fungi.
    Scheublin TR; Sanders IR; Keel C; van der Meer JR
    ISME J; 2010 Jun; 4(6):752-63. PubMed ID: 20147983
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Arbuscular mycorrhizal fungi reduce growth and infect roots of the non-host plant Arabidopsis thaliana.
    Veiga RS; Faccio A; Genre A; Pieterse CM; Bonfante P; van der Heijden MG
    Plant Cell Environ; 2013 Nov; 36(11):1926-37. PubMed ID: 23527688
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Resource limitation is a driver of local adaptation in mycorrhizal symbioses.
    Johnson NC; Wilson GW; Bowker MA; Wilson JA; Miller RM
    Proc Natl Acad Sci U S A; 2010 Feb; 107(5):2093-8. PubMed ID: 20133855
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Improvement of Cupressus atlantica Gaussen growth by inoculation with native arbuscular mycorrhizal fungi.
    Ouahmane L; Hafidi M; Thioulouse J; Ducousso M; Kisa M; Prin Y; Galiana A; Boumezzough A; Duponnois R
    J Appl Microbiol; 2007 Sep; 103(3):683-90. PubMed ID: 17714402
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Local adaptation to mycorrhizal fungi in geographically close Lobelia siphilitica populations.
    Rekret P; Maherali H
    Oecologia; 2019 May; 190(1):127-138. PubMed ID: 31102015
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effects of different arbuscular mycorrhizal fungal backgrounds and soils on olive plants growth and water relation properties under well-watered and drought conditions.
    Calvo-Polanco M; Sánchez-Castro I; Cantos M; García JL; Azcón R; Ruiz-Lozano JM; Beuzón CR; Aroca R
    Plant Cell Environ; 2016 Nov; 39(11):2498-2514. PubMed ID: 27448529
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Influences of arbuscular mycorrhizae, phosphorus fertiliser and biochar on alfalfa growth, nutrient status and cadmium uptake.
    Liu M; Zhao Z; Chen L; Wang L; Ji L; Xiao Y
    Ecotoxicol Environ Saf; 2020 Jun; 196():110537. PubMed ID: 32272346
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Phosphorus efficiencies and responses of barley (Hordeum vulgare L.) to arbuscular mycorrhizal fungi grown in highly calcareous soil.
    Zhu YG; Smith FA; Smith SE
    Mycorrhiza; 2003 Apr; 13(2):93-100. PubMed ID: 12682831
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Appressoria and phosphorus fluxes in mycorrhizal plants: connections between soil- and plant-based hyphae.
    Pepe A; Giovannetti M; Sbrana C
    Mycorrhiza; 2020 Sep; 30(5):589-600. PubMed ID: 32533256
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Carbon dynamics in mycorrhizal symbioses is linked to carbon costs and phosphorus benefits.
    Olsson PA; Rahm J; Aliasgharzad N
    FEMS Microbiol Ecol; 2010 Apr; 72(1):125-31. PubMed ID: 20459516
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Arbuscular mycorrhizae enhance metal lead uptake and growth of host plants under a sand culture experiment.
    Chen X; Wu C; Tang J; Hu S
    Chemosphere; 2005 Jul; 60(5):665-71. PubMed ID: 15963805
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effectiveness of autochthonous bacterium and mycorrhizal fungus on Trifolium growth, symbiotic development and soil enzymatic activities in Zn contaminated soil.
    Vivas A; Barea JM; Biró B; Azcón R
    J Appl Microbiol; 2006 Mar; 100(3):587-98. PubMed ID: 16478498
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effects of
    Wu F; Li Z; Lin Y; Zhang L
    Can J Microbiol; 2021 May; 67(5):349-357. PubMed ID: 33769090
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Phosphorus forms affect the hyphosphere bacterial community involved in soil organic phosphorus turnover.
    Wang F; Kertesz MA; Feng G
    Mycorrhiza; 2019 Jul; 29(4):351-362. PubMed ID: 31044298
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [Phosphorus transfer between mixed poplar and black locust seedlings].
    He W; Jia L; Hao B; Wen X; Zhai M
    Ying Yong Sheng Tai Xue Bao; 2003 Apr; 14(4):481-6. PubMed ID: 12920885
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Utilization of organic nitrogen by arbuscular mycorrhizal fungi-is there a specific role for protists and ammonia oxidizers?
    Bukovská P; Bonkowski M; Konvalinková T; Beskid O; Hujslová M; Püschel D; Řezáčová V; Gutiérrez-Núñez MS; Gryndler M; Jansa J
    Mycorrhiza; 2018 Aug; 28(5-6):465. PubMed ID: 29951863
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Mycorrhizal inoculant alleviates salt stress in Sesbania aegyptiaca and Sesbania grandiflora under field conditions: evidence for reduced sodium and improved magnesium uptake.
    Giri B; Mukerji KG
    Mycorrhiza; 2004 Oct; 14(5):307-12. PubMed ID: 14574620
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.