BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 27067716)

  • 41. A technique of using gated-CT images to determine internal target volume (ITV) for fractionated stereotactic lung radiotherapy.
    Jin JY; Ajlouni M; Chen Q; Yin FF; Movsas B
    Radiother Oncol; 2006 Feb; 78(2):177-84. PubMed ID: 16376444
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Study of the IMRT interplay effect using a 4DCT Monte Carlo dose calculation.
    Jensen MD; Abdellatif A; Chen J; Wong E
    Phys Med Biol; 2012 Apr; 57(8):N89-99. PubMed ID: 22469614
    [TBL] [Abstract][Full Text] [Related]  

  • 43. When is respiratory management necessary for partial breast intensity modulated radiotherapy: a respiratory amplitude escalation treatment planning study.
    Quirk S; Conroy L; Smith WL
    Radiother Oncol; 2014 Sep; 112(3):402-6. PubMed ID: 25236712
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Functional image-guided radiotherapy planning in respiratory-gated intensity-modulated radiotherapy for lung cancer patients with chronic obstructive pulmonary disease.
    Kimura T; Nishibuchi I; Murakami Y; Kenjo M; Kaneyasu Y; Nagata Y
    Int J Radiat Oncol Biol Phys; 2012 Mar; 82(4):e663-70. PubMed ID: 22245191
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Use of megavoltage cine-images for studying intra-thoracic motion during radiotherapy for locally advanced lung cancer.
    Muirhead R; van der Weide L; van Sornsen de Koste JR; Cover KS; Senan S
    Radiother Oncol; 2011 May; 99(2):155-60. PubMed ID: 21621867
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Impact of internal target volume definition for pencil beam scanned proton treatment planning in the presence of respiratory motion variability for lung cancer: A proof of concept.
    Krieger M; Giger A; Salomir R; Bieri O; Celicanin Z; Cattin PC; Lomax AJ; Weber DC; Zhang Y
    Radiother Oncol; 2020 Apr; 145():154-161. PubMed ID: 32007759
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The effects of intra-fraction organ motion on the delivery of intensity-modulated field with a multileaf collimator.
    Chui CS; Yorke E; Hong L
    Med Phys; 2003 Jul; 30(7):1736-46. PubMed ID: 12906191
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Novel lung IMRT planning algorithms with nonuniform dose delivery strategy to account for respiratory motion.
    Li X; Zhang P; Mah D; Gewanter R; Kutcher G
    Med Phys; 2006 Sep; 33(9):3390-8. PubMed ID: 17022235
    [TBL] [Abstract][Full Text] [Related]  

  • 49. An "in silico" clinical trial comparing free breathing, slow and respiration correlated computed tomography in lung cancer patients.
    Bosmans G; Buijsen J; Dekker A; Velders M; Boersma L; De Ruysscher D; Minken A; Lambin P
    Radiother Oncol; 2006 Oct; 81(1):73-80. PubMed ID: 16971010
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Incorporating uncertainties in respiratory motion into 4D treatment plan optimization.
    Heath E; Unkelbach J; Oelfke U
    Med Phys; 2009 Jul; 36(7):3059-71. PubMed ID: 19673205
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Evaluation of tumor motion effects on dose distribution for hypofractionated intensity-modulated radiotherapy of non-small-cell lung cancer.
    Kang H; Yorke ED; Yang J; Chui CS; Rosenzweig KE; Amols HI
    J Appl Clin Med Phys; 2010 Jun; 11(3):3182. PubMed ID: 20717084
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Dynamic volume vs respiratory correlated 4DCT for motion assessment in radiation therapy simulation.
    Coolens C; Bracken J; Driscoll B; Hope A; Jaffray D
    Med Phys; 2012 May; 39(5):2669-81. PubMed ID: 22559637
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Systematic evaluation of four-dimensional hybrid depth scanning for carbon-ion lung therapy.
    Mori S; Furukawa T; Inaniwa T; Zenklusen S; Nakao M; Shirai T; Noda K
    Med Phys; 2013 Mar; 40(3):031720. PubMed ID: 23464315
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Accounting for respiratory motion in partial breast intensity modulated radiotherapy during treatment planning: a new patient selection metric.
    Quirk S; Conroy L; Smith WL
    Eur J Cancer; 2014 Jul; 50(11):1872-9. PubMed ID: 24835033
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Simultaneous optimization of sequential IMRT plans.
    Popple RA; Prellop PB; Spencer SA; De Los Santos JF; Duan J; Fiveash JB; Brezovich IA
    Med Phys; 2005 Nov; 32(11):3257-66. PubMed ID: 16370415
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Accounting for respiratory motion in small serial structures during radiotherapy planning: proof of concept in virtual bronchoscopy-guided lung functional avoidance radiotherapy.
    Vicente E; Modiri A; Yu KC; Wibowo H; Yan Y; Timmerman R; Sawant A
    Phys Med Biol; 2019 Nov; 64(22):225011. PubMed ID: 31665703
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Dosimetric evaluation of the interplay effect in respiratory-gated RapidArc radiation therapy.
    Riley C; Yang Y; Li T; Zhang Y; Heron DE; Huq MS
    Med Phys; 2014 Jan; 41(1):011715. PubMed ID: 24387507
    [TBL] [Abstract][Full Text] [Related]  

  • 58. An evaluation of the mid-ventilation method for the planning of stereotactic lung plans.
    Thomas SJ; Evans BJ; Harihar L; Chantler HJ; Martin AGR; Harden SV
    Radiother Oncol; 2019 Aug; 137():110-116. PubMed ID: 31085390
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Investigation of respiration induced intra- and inter-fractional tumour motion using a standard Cone Beam CT.
    Gottlieb KL; Hansen CR; Hansen O; Westberg J; Brink C
    Acta Oncol; 2010 Oct; 49(7):1192-8. PubMed ID: 20831512
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Robustness of 4D-optimized scanned carbon ion beam therapy against interfractional changes in lung cancer.
    Graeff C
    Radiother Oncol; 2017 Mar; 122(3):387-392. PubMed ID: 28073579
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.