BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 27067734)

  • 1. Control of physical properties of carbon nanofibers obtained from coaxial electrospinning of PMMA and PAN with adjustable inner/outer nozzle-ends.
    Kaerkitcha N; Chuangchote S; Sagawa T
    Nanoscale Res Lett; 2016 Dec; 11(1):186. PubMed ID: 27067734
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coaxial Electrospinning and Characterization of Core-Shell Structured Cellulose Nanocrystal Reinforced PMMA/PAN Composite Fibers.
    Li C; Li Q; Ni X; Liu G; Cheng W; Han G
    Materials (Basel); 2017 May; 10(6):. PubMed ID: 28772933
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coaxial electrospun poly(methyl methacrylate)-polyacrylonitrile nanofibers: atomic force microscopy and compositional characterization.
    Zander NE; Strawhecker KE; Orlicki JA; Rawlett AM; Beebe TP
    J Phys Chem B; 2011 Nov; 115(43):12441-7. PubMed ID: 21928836
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Co-electrospinning of core-shell fibers using a single-nozzle technique.
    Bazilevsky AV; Yarin AL; Megaridis CM
    Langmuir; 2007 Feb; 23(5):2311-4. PubMed ID: 17266345
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NaF-loaded core-shell PAN-PMMA nanofibers as reinforcements for Bis-GMA/TEGDMA restorative resins.
    Cheng L; Zhou X; Zhong H; Deng X; Cai Q; Yang X
    Mater Sci Eng C Mater Biol Appl; 2014 Jan; 34():262-9. PubMed ID: 24268258
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparatively Thermal and Crystalline Study of Poly(methyl-methacrylate)/Polyacrylonitrile Hybrids: Core-Shell Hollow Fibers, Porous Fibers, and Thin Films.
    Huang J; Cao Y; Huang Z; Imbraguglio SA; Wang Z; Peng X; Guo Z
    Macromol Mater Eng; 2016 Nov; 301(11):1327-1336. PubMed ID: 29104455
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation of Coaxial-Line and Hollow Mn2O3 Nanofibers by Single-Nozzle Electrospinning and Their Catalytic Performances for Thermal Decomposition of Ammonium Perchlorate.
    Liang J; Yang J; Cao W; Guo X; Guo X; Ding W
    J Nanosci Nanotechnol; 2015 Sep; 15(9):7229-34. PubMed ID: 26716314
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanics of Emulsion Electrospun Porous Carbon Fibers as Building Blocks of Multifunctional Materials.
    Chen Y; Cai J; Boyd JG; Kennedy WJ; Naraghi M
    ACS Appl Mater Interfaces; 2018 Nov; 10(44):38310-38318. PubMed ID: 30360119
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Core-shell structured PEO-chitosan nanofibers by coaxial electrospinning.
    Pakravan M; Heuzey MC; Ajji A
    Biomacromolecules; 2012 Feb; 13(2):412-21. PubMed ID: 22229633
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and characterization of multiwalled CNT-PAN based composite carbon nanofibers via electrospinning.
    Kaur N; Kumar V; Dhakate SR
    Springerplus; 2016; 5():483. PubMed ID: 27217998
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Arced Multi-Nozzle Electrospinning Spinneret for High-Throughput Production of Nanofibers.
    Jiang J; Zheng G; Wang X; Li W; Kang G; Chen H; Guo S; Liu J
    Micromachines (Basel); 2019 Dec; 11(1):. PubMed ID: 31878348
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation of submicron polypyrrole/poly(methyl methacrylate) coaxial fibers and conversion to polypyrrole tubes and carbon tubes.
    Dong H; Jones WE
    Langmuir; 2006 Dec; 22(26):11384-7. PubMed ID: 17154629
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polyacrylonitrile nanofibers prepared using coaxial electrospinning with LiCl solution as sheath fluid.
    Yu DG; Lu P; Branford-White C; Yang JH; Wang X
    Nanotechnology; 2011 Oct; 22(43):435301. PubMed ID: 21955591
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel strategy to directly fabricate flexible hollow nanofibers with tunable luminescence-electricity-magnetism trifunctionality using one-pot electrospinning.
    Liu Y; Ma Q; Dong X; Yu W; Wang J; Liu G
    Phys Chem Chem Phys; 2015 Sep; 17(35):22977-84. PubMed ID: 26269421
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of carbon nanospheres by the pyrolysis of polyacrylonitrile-poly(methyl methacrylate) core-shell composite nanoparticles.
    Wei D; Zhang Y; Fu J
    Beilstein J Nanotechnol; 2017; 8():1897-1908. PubMed ID: 29046837
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of pores in hollow carbon nanofibers on their negative electrode properties for a lithium rechargeable battery.
    Lee BS; Son SB; Park KM; Lee G; Oh KH; Lee SH; Yu WR
    ACS Appl Mater Interfaces; 2012 Dec; 4(12):6702-10. PubMed ID: 23206349
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aqueous-Based Coaxial Electrospinning of Genetically Engineered Silk Elastin Core-Shell Nanofibers.
    Zhu J; Huang W; Zhang Q; Ling S; Chen Y; Kaplan DL
    Materials (Basel); 2016 Mar; 9(4):. PubMed ID: 28773344
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Post-draw PAN-PMMA nanofiber reinforced and toughened Bis-GMA dental restorative composite.
    Sun W; Cai Q; Li P; Deng X; Wei Y; Xu M; Yang X
    Dent Mater; 2010 Sep; 26(9):873-80. PubMed ID: 20579722
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Iron oxide/lignin-based hollow carbon nanofibers nanocomposite as an application electrode materials for supercapacitors.
    Yu B; Gele A; Wang L
    Int J Biol Macromol; 2018 Oct; 118(Pt A):478-484. PubMed ID: 29933002
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production of uniform-sized polymer core-shell microcapsules by coaxial electrospraying.
    Hwang YK; Jeong U; Cho EC
    Langmuir; 2008 Mar; 24(6):2446-51. PubMed ID: 18257594
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.