These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 27067956)

  • 1. Design and stabilisation of a high area iron molybdate surface for the selective oxidation of methanol to formaldehyde.
    Chapman S; Brookes C; Bowker M; Gibson EK; Wells PP
    Faraday Discuss; 2016 Jul; 188():115-29. PubMed ID: 27067956
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Al-doped Fe
    Bowker M; Hellier P; Decarolis D; Gianolio D; Mohammed KMH; Stenner A; Huthwelker T; Wells PP
    Phys Chem Chem Phys; 2020 Sep; 22(34):18911-18918. PubMed ID: 32469018
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolution of active catalysts for the selective oxidative dehydrogenation of methanol on Fe2O3 surface doped with Mo oxide.
    Bowker M; Brookes C; Carley AF; House MP; Kosif M; Sankar G; Wawata I; Wells PP; Yaseneva P
    Phys Chem Chem Phys; 2013 Aug; 15(29):12056-67. PubMed ID: 23552323
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unraveling surface and bulk dynamics of iron(III) molybdate during oxidative dehydrogenation using operando and transient spectroscopies.
    Schumacher L; Radtke M; Welzenbach J; Hess C
    Commun Chem; 2023 Oct; 6(1):230. PubMed ID: 37884607
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Methanol oxidation on Fe2O3 catalysts and the effects of surface Mo.
    Bowker M; Gibson EK; Silverwood IP; Brookes C
    Faraday Discuss; 2016 Jul; 188():387-98. PubMed ID: 27101412
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study of the elementary processes involved in the selective oxidation of methane over MoOx/SiO2.
    Ohler N; Bell AT
    J Phys Chem B; 2006 Feb; 110(6):2700-9. PubMed ID: 16471874
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural dynamics of an iron molybdate catalyst under redox cycling conditions studied with in situ multi edge XAS and XRD.
    Gaur A; Stehle M; Raun KV; Thrane J; Jensen AD; Grunwaldt JD; Høj M
    Phys Chem Chem Phys; 2020 May; 22(20):11713-11723. PubMed ID: 32407426
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gold Nanoparticles Supported on Fe₂O₃–MO(x) (M = Al, Zr, Zn) Composite Oxides for Partial Oxidation of Methanol.
    Roselin LS; Liao LM; Chang FW
    J Nanosci Nanotechnol; 2017 Apr; 17(4):2796-803. PubMed ID: 29668161
    [TBL] [Abstract][Full Text] [Related]  

  • 9. VO
    Hellier P; Wells PP; Gianolio D; Bowker M
    Top Catal; 2018; 61(5):357-364. PubMed ID: 31258303
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A study of the redox properties of MoOx/SiO2.
    Ohler N; Bell AT
    J Phys Chem B; 2005 Dec; 109(49):23419-29. PubMed ID: 16375315
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of complex model oxide catalysts: Mo oxide supported on Fe3o4(111).
    Bamroongwongdee C; Bowker M; Carley AF; Davies PR; Davies RJ; Edwards D
    Faraday Discuss; 2013; 162():201-12. PubMed ID: 24015585
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probe molecule chemisorption-low energy ion scattering study of surface active sites present in the orthorhombic Mo-V-(Te-Nb)-O catalysts for propane (amm)oxidation.
    Guliants VV; Bhandari R; Hughett AR; Bhatt S; Schuler BD; Brongersma HH; Knoester A; Gaffney AM; Han S
    J Phys Chem B; 2006 Mar; 110(12):6129-40. PubMed ID: 16553426
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Active Molybdenum Oxide Phase in the Methanol Oxidation to Formaldehyde (Formox Process): A DFT Study.
    Rellán-Piñeiro M; López N
    ChemSusChem; 2015 Jul; 8(13):2231-9. PubMed ID: 26083992
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnetically separable core-shell structural γ-Fe2O3@Cu/Al-MCM-41 nanocomposite and its performance in heterogeneous Fenton catalysis.
    Ling Y; Long M; Hu P; Chen Y; Huang J
    J Hazard Mater; 2014 Jan; 264():195-202. PubMed ID: 24295771
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Experimental studies on low-temperature selective catalytic reduction of NO on magnetic iron-based catalysts].
    Yao GH; Zhang Q; Qin Y; Wang F; Lu F; Gui KT
    Huan Jing Ke Xue; 2009 Oct; 30(10):2852-7. PubMed ID: 19968097
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The new challenge of partial oxidation of methane over Fe
    Krisnandi YK; Nurani DA; Alfian DV; Sofyani U; Faisal M; Saragi IR; Pamungkas AZ; Pratama AP
    Heliyon; 2021 Nov; 7(11):e08305. PubMed ID: 34805565
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of promoter on the catalytic activity of high performance Pd/PATP catalysts.
    Han W; Zhang P; Pan X; Tang Z; Lu G
    J Hazard Mater; 2013 Dec; 263 Pt 2():299-306. PubMed ID: 24225591
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photocatalytic oxidation technology for humic acid removal using a nano-structured TiO2/Fe2O3 catalyst.
    Qiao S; Sun DD; Tay JH; Easton C
    Water Sci Technol; 2003; 47(1):211-7. PubMed ID: 12578197
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Novel Hydro-Thermal Synthesis of Nano-Structured Molybdenum-Iron Intermetallic Alloys at Relatively Low Temperatures.
    El-Geassy AA; Abdel Halim KS; Alghamdi AS
    Materials (Basel); 2023 Mar; 16(7):. PubMed ID: 37049031
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface and bulk aspects of mixed oxide catalytic nanoparticles: oxidation and dehydration of CH(3)OH by polyoxometallates.
    Nakka L; Molinari JE; Wachs IE
    J Am Chem Soc; 2009 Oct; 131(42):15544-54. PubMed ID: 19807071
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.