BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

768 related articles for article (PubMed ID: 27068062)

  • 1. Reactive oxygen species production in cardiac mitochondria after complex I inhibition: Modulation by substrate-dependent regulation of the NADH/NAD(+) ratio.
    Korge P; Calmettes G; Weiss JN
    Free Radic Biol Med; 2016 Jul; 96():22-33. PubMed ID: 27068062
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reactive oxygen species production induced by pore opening in cardiac mitochondria: The role of complex III.
    Korge P; Calmettes G; John SA; Weiss JN
    J Biol Chem; 2017 Jun; 292(24):9882-9895. PubMed ID: 28450391
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generation of reactive oxygen species in the reaction catalyzed by alpha-ketoglutarate dehydrogenase.
    Tretter L; Adam-Vizi V
    J Neurosci; 2004 Sep; 24(36):7771-8. PubMed ID: 15356188
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective NADH communication from α-ketoglutarate dehydrogenase to mitochondrial transhydrogenase prevents reactive oxygen species formation under reducing conditions in the heart.
    Wagner M; Bertero E; Nickel A; Kohlhaas M; Gibson GE; Heggermont W; Heymans S; Maack C
    Basic Res Cardiol; 2020 Aug; 115(5):53. PubMed ID: 32748289
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Absence of NADH channeling in coupled reaction of mitochondrial malate dehydrogenase and complex I in alamethicin-permeabilized rat liver mitochondria.
    Kotlyar AB; Maklashina E; Cecchini G
    Biochem Biophys Res Commun; 2004 Jun; 318(4):987-91. PubMed ID: 15147970
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitochondrial alpha-ketoglutarate dehydrogenase complex generates reactive oxygen species.
    Starkov AA; Fiskum G; Chinopoulos C; Lorenzo BJ; Browne SE; Patel MS; Beal MF
    J Neurosci; 2004 Sep; 24(36):7779-88. PubMed ID: 15356189
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CONTROL OF GLUTAMATE OXIDATION IN BRAIN AND LIVER MITOCHONDRIAL SYSTEMS.
    BALAZS R
    Biochem J; 1965 May; 95(2):497-508. PubMed ID: 14340100
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of Krebs cycle enzymes by hydrogen peroxide: A key role of [alpha]-ketoglutarate dehydrogenase in limiting NADH production under oxidative stress.
    Tretter L; Adam-Vizi V
    J Neurosci; 2000 Dec; 20(24):8972-9. PubMed ID: 11124972
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Production of reactive oxygen species by mitochondria: central role of complex III.
    Chen Q; Vazquez EJ; Moghaddas S; Hoppel CL; Lesnefsky EJ
    J Biol Chem; 2003 Sep; 278(38):36027-31. PubMed ID: 12840017
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reactive oxygen species are generated by the respiratory complex II--evidence for lack of contribution of the reverse electron flow in complex I.
    Moreno-Sánchez R; Hernández-Esquivel L; Rivero-Segura NA; Marín-Hernández A; Neuzil J; Ralph SJ; Rodríguez-Enríquez S
    FEBS J; 2013 Feb; 280(3):927-38. PubMed ID: 23206332
    [TBL] [Abstract][Full Text] [Related]  

  • 11. What are the sources of hydrogen peroxide production by heart mitochondria?
    Grivennikova VG; Kareyeva AV; Vinogradov AD
    Biochim Biophys Acta; 2010; 1797(6-7):939-44. PubMed ID: 20170624
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mitochondria from the left heart ventricles of both normotensive and spontaneously hypertensive rats oxidize externally added NADH mostly via a novel malate/oxaloacetate shuttle as reconstructed in vitro.
    Atlante A; Seccia TM; De Bari L; Marra E; Passarella S
    Int J Mol Med; 2006 Jul; 18(1):177-86. PubMed ID: 16786170
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rotenone-insensitive NADH dehydrogenase is a potential source of superoxide in procyclic Trypanosoma brucei mitochondria.
    Fang J; Beattie DS
    Mol Biochem Parasitol; 2002 Aug; 123(2):135-42. PubMed ID: 12270629
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Succinate modulation of H2O2 release at NADH:ubiquinone oxidoreductase (Complex I) in brain mitochondria.
    Zoccarato F; Cavallini L; Bortolami S; Alexandre A
    Biochem J; 2007 Aug; 406(1):125-9. PubMed ID: 17477844
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of malate dehydrogenase activity by glutamate, citrate, alpha-ketoglutarate, and multienzyme interaction.
    Fahien LA; Kmiotek EH; MacDonald MJ; Fibich B; Mandic M
    J Biol Chem; 1988 Aug; 263(22):10687-97. PubMed ID: 2899080
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alpha-ketoglutarate dehydrogenase: a target and generator of oxidative stress.
    Tretter L; Adam-Vizi V
    Philos Trans R Soc Lond B Biol Sci; 2005 Dec; 360(1464):2335-45. PubMed ID: 16321804
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Methylmalonate impairs mitochondrial respiration supported by NADH-linked substrates: involvement of mitochondrial glutamate metabolism.
    Melo DR; Mirandola SR; Assunção NA; Castilho RF
    J Neurosci Res; 2012 Jun; 90(6):1190-9. PubMed ID: 22488725
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The ROS production induced by a reverse-electron flux at respiratory-chain complex 1 is hampered by metformin.
    Batandier C; Guigas B; Detaille D; El-Mir MY; Fontaine E; Rigoulet M; Leverve XM
    J Bioenerg Biomembr; 2006 Feb; 38(1):33-42. PubMed ID: 16732470
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of malate oxidation in plant mitochondria. Response to rotenone and exogenous NAD+.
    Palmer JM; Schwitzguébel JP; Møller IM
    Biochem J; 1982 Dec; 208(3):703-11. PubMed ID: 6819864
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calcium and 2-oxoglutarate-mediated control of aspartate formation by rat heart mitochondria.
    Scaduto RC
    Eur J Biochem; 1994 Aug; 223(3):751-8. PubMed ID: 7914488
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 39.