These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

335 related articles for article (PubMed ID: 27068742)

  • 1. Development of an IMU-based foot-ground contact detection (FGCD) algorithm.
    Kim M; Lee D
    Ergonomics; 2017 Mar; 60(3):384-403. PubMed ID: 27068742
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automatic identification of gait events during walking on uneven surfaces.
    Eckardt N; Kibele A
    Gait Posture; 2017 Feb; 52():83-86. PubMed ID: 27888695
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of the performance of 17 algorithms from a systematic review: Influence of sensor position, analysed variable and computational approach in gait timing estimation from IMU measurements.
    Pacini Panebianco G; Bisi MC; Stagni R; Fantozzi S
    Gait Posture; 2018 Oct; 66():76-82. PubMed ID: 30170137
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PI-Sole: A Low-Cost Solution for Gait Monitoring Using Off-The-Shelf Piezoelectric Sensors and IMU.
    Chandel V; Singhal S; Sharma V; Ahmed N; Ghose A
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3290-3296. PubMed ID: 31946586
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterizing Bodyweight-Supported Treadmill Walking on Land and Underwater Using Foot-Worn Inertial Measurement Units and Machine Learning for Gait Event Detection.
    Song S; Fernandes NJ; Nordin AD
    Sensors (Basel); 2023 Sep; 23(18):. PubMed ID: 37766002
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparison of kinematic-based gait event detection methods in a self-paced treadmill application.
    Hendershot BD; Mahon CE; Pruziner AL
    J Biomech; 2016 Dec; 49(16):4146-4149. PubMed ID: 27825601
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment and validation of a simple automated method for the detection of gait events and intervals.
    Ghoussayni S; Stevens C; Durham S; Ewins D
    Gait Posture; 2004 Dec; 20(3):266-72. PubMed ID: 15531173
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development and validation of an accelerometer-based method for quantifying gait events.
    Boutaayamou M; Schwartz C; Stamatakis J; Denoël V; Maquet D; Forthomme B; Croisier JL; Macq B; Verly JG; Garraux G; Brüls O
    Med Eng Phys; 2015 Feb; 37(2):226-32. PubMed ID: 25618221
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluating the Impact of IMU Sensor Location and Walking Task on Accuracy of Gait Event Detection Algorithms.
    Niswander W; Kontson K
    Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34207781
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Locomotion Mode Recognition Algorithm Based on Gaussian Mixture Model Using IMU Sensors.
    Shin D; Lee S; Hwang S
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33920969
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gait phase detection based on inertial measurement unit and force-sensitive resistors embedded in a shoe.
    Liu X; Zhang S; Yao B; Yu Y; Wang Y; Fan J
    Rev Sci Instrum; 2021 Aug; 92(8):084708. PubMed ID: 34470402
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Novel Gait Event Detection Algorithm Using a Thigh-Worn Inertial Measurement Unit and Joint Angle Information.
    Strick JA; Farris RJ; Sawicki JT
    J Biomech Eng; 2024 Apr; 146(4):. PubMed ID: 38183222
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real-time kinematic-based detection of foot-strike during walking.
    Karakasis C; Artemiadis P
    J Biomech; 2021 Dec; 129():110849. PubMed ID: 34800744
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Validation of Running Gait Event Detection Algorithms in a Semi-Uncontrolled Environment.
    Donahue SR; Hahn ME
    Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35591141
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel method for accurate division of the gait cycle into seven phases using shank angular velocity.
    Salminen M; Perttunen J; Avela J; Vehkaoja A
    Gait Posture; 2024 Jun; 111():1-7. PubMed ID: 38603967
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Foot angular kinematics measured with inertial measurement units: A reliable criterion for real-time gait event detection.
    Nazarahari M; Khandan A; Khan A; Rouhani H
    J Biomech; 2022 Jan; 130():110880. PubMed ID: 34871897
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of plantigrady and heel-strike in the mechanics and energetics of human walking with implications for the evolution of the human foot.
    Webber JT; Raichlen DA
    J Exp Biol; 2016 Dec; 219(Pt 23):3729-3737. PubMed ID: 27903628
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of the performance of accelerometer-based gait event detection algorithms in different real-world scenarios using the MAREA gait database.
    Khandelwal S; Wickström N
    Gait Posture; 2017 Jan; 51():84-90. PubMed ID: 27736735
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pressure-Sensitive Insoles for Real-Time Gait-Related Applications.
    Martini E; Fiumalbi T; Dell'Agnello F; Ivanić Z; Munih M; Vitiello N; Crea S
    Sensors (Basel); 2020 Mar; 20(5):. PubMed ID: 32155828
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magnetometer-Free, IMU-Based Foot Progression Angle Estimation for Real-Life Walking Conditions.
    Tan T; Strout ZA; Xia H; Orban M; Shull PB
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():282-289. PubMed ID: 33360997
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.