These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 27068832)

  • 1. Cellulases: Classification, Methods of Determination and Industrial Applications.
    Sharma A; Tewari R; Rana SS; Soni R; Soni SK
    Appl Biochem Biotechnol; 2016 Aug; 179(8):1346-80. PubMed ID: 27068832
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives.
    Kumar R; Singh S; Singh OV
    J Ind Microbiol Biotechnol; 2008 May; 35(5):377-391. PubMed ID: 18338189
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cellulases: Role in Lignocellulosic Biomass Utilization.
    Soni SK; Sharma A; Soni R
    Methods Mol Biol; 2018; 1796():3-23. PubMed ID: 29856042
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Screening for cellulases with industrial value and their use in biomass conversion.
    Jüergensen J; Ilmberger N; Streit WR
    Methods Mol Biol; 2012; 834():1-16. PubMed ID: 22144349
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cellulase activities in biomass conversion: measurement methods and comparison.
    Dashtban M; Maki M; Leung KT; Mao C; Qin W
    Crit Rev Biotechnol; 2010 Dec; 30(4):302-9. PubMed ID: 20868219
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Production of fermentable glucose from bioconversion of cellulose using efficient microbial cellulases produced from water hyacinth waste.
    Tripathi M; Lal B; Syed A; Mishra PK; Elgorban AM; Verma M; Singh R; Mohammad A; Srivastava N
    Int J Biol Macromol; 2023 Dec; 252():126376. PubMed ID: 37595712
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of product inhibition of CBH1, CBH2, and EG1 using a novel cellulase activity assay.
    Du F; Wolger E; Wallace L; Liu A; Kaper T; Kelemen B
    Appl Biochem Biotechnol; 2010 May; 161(1-8):313-7. PubMed ID: 19830597
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Test of Efficacy of Cellulases for Biomass Degradation.
    Jørgensen H
    Methods Mol Biol; 2018; 1796():283-297. PubMed ID: 29856061
    [TBL] [Abstract][Full Text] [Related]  

  • 9. β -Glucosidases from the fungus trichoderma: an efficient cellulase machinery in biotechnological applications.
    Tiwari P; Misra BN; Sangwan NS
    Biomed Res Int; 2013; 2013():203735. PubMed ID: 23984325
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioprospecting of functional cellulases from metagenome for second generation biofuel production: a review.
    Tiwari R; Nain L; Labrou NE; Shukla P
    Crit Rev Microbiol; 2018 Mar; 44(2):244-257. PubMed ID: 28609211
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role and significance of beta-glucosidases in the hydrolysis of cellulose for bioethanol production.
    Singhania RR; Patel AK; Sukumaran RK; Larroche C; Pandey A
    Bioresour Technol; 2013 Jan; 127():500-7. PubMed ID: 23069613
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Processivity and the Mechanisms of Processive Endoglucanases.
    Wu S; Wu S
    Appl Biochem Biotechnol; 2020 Feb; 190(2):448-463. PubMed ID: 31378843
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cellulases for biomass degradation: comparing recombinant cellulase expression platforms.
    Garvey M; Klose H; Fischer R; Lambertz C; Commandeur U
    Trends Biotechnol; 2013 Oct; 31(10):581-93. PubMed ID: 23910542
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cellulase and xylanase synergism in industrial biotechnology.
    Bajaj P; Mahajan R
    Appl Microbiol Biotechnol; 2019 Nov; 103(21-22):8711-8724. PubMed ID: 31628521
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The realm of cellulases in biorefinery development.
    Chandel AK; Chandrasekhar G; Silva MB; Silvério da Silva S
    Crit Rev Biotechnol; 2012 Sep; 32(3):187-202. PubMed ID: 21929293
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessing cellulase performance on pretreated lignocellulosic biomass using saccharification and fermentation-based protocols.
    Dowe N
    Methods Mol Biol; 2009; 581():233-45. PubMed ID: 19768626
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New enzyme insights drive advances in commercial ethanol production.
    Harris PV; Xu F; Kreel NE; Kang C; Fukuyama S
    Curr Opin Chem Biol; 2014 Apr; 19():162-70. PubMed ID: 24681544
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recycling cellulases for cellulosic ethanol production at industrial relevant conditions: potential and temperature dependency at high solid processes.
    Lindedam J; Haven MØ; Chylenski P; Jørgensen H; Felby C
    Bioresour Technol; 2013 Nov; 148():180-8. PubMed ID: 24045205
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An overview on marine cellulolytic enzymes and their potential applications.
    Barzkar N; Sohail M
    Appl Microbiol Biotechnol; 2020 Aug; 104(16):6873-6892. PubMed ID: 32556412
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermostable cellulose saccharifying microbial enzymes: Characteristics, recent advances and biotechnological applications.
    Dadwal A; Sharma S; Satyanarayana T
    Int J Biol Macromol; 2021 Oct; 188():226-244. PubMed ID: 34371052
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.