These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
385 related articles for article (PubMed ID: 27068979)
1. GPCR-styrene maleic acid lipid particles (GPCR-SMALPs): their nature and potential. Wheatley M; Charlton J; Jamshad M; Routledge SJ; Bailey S; La-Borde PJ; Azam MT; Logan RT; Bill RM; Dafforn TR; Poyner DR Biochem Soc Trans; 2016 Apr; 44(2):619-23. PubMed ID: 27068979 [TBL] [Abstract][Full Text] [Related]
2. Single molecule binding of a ligand to a G-protein-coupled receptor in real time using fluorescence correlation spectroscopy, rendered possible by nano-encapsulation in styrene maleic acid lipid particles. Grime RL; Goulding J; Uddin R; Stoddart LA; Hill SJ; Poyner DR; Briddon SJ; Wheatley M Nanoscale; 2020 Jun; 12(21):11518-11525. PubMed ID: 32428052 [TBL] [Abstract][Full Text] [Related]
3. Styrene maleic-acid lipid particles (SMALPs) into detergent or amphipols: An exchange protocol for membrane protein characterisation. Hesketh SJ; Klebl DP; Higgins AJ; Thomsen M; Pickles IB; Sobott F; Sivaprasadarao A; Postis VLG; Muench SP Biochim Biophys Acta Biomembr; 2020 May; 1862(5):183192. PubMed ID: 31945320 [TBL] [Abstract][Full Text] [Related]
4. G-protein coupled receptor solubilization and purification for biophysical analysis and functional studies, in the total absence of detergent. Jamshad M; Charlton J; Lin YP; Routledge SJ; Bawa Z; Knowles TJ; Overduin M; Dekker N; Dafforn TR; Bill RM; Poyner DR; Wheatley M Biosci Rep; 2015 Apr; 35(2):. PubMed ID: 25720391 [TBL] [Abstract][Full Text] [Related]
5. Application of the SMALP technology to the isolation of GPCRs from low-yielding cell lines. Tedesco D; Maj M; Malarczyk P; Cingolani A; Zaffagnini M; Wnorowski A; Czapiński J; Benelli T; Mazzoni R; Bartolini M; Jóźwiak K Biochim Biophys Acta Biomembr; 2021 Sep; 1863(9):183641. PubMed ID: 33984320 [TBL] [Abstract][Full Text] [Related]
6. GPCRs in the round: SMA-like copolymers and SMALPs as a platform for investigating GPCRs. Ayub H; Murray RJ; Kuyler GC; Napier-Khwaja F; Gunner J; Dafforn TR; Klumperman B; Poyner DR; Wheatley M Arch Biochem Biophys; 2024 Apr; 754():109946. PubMed ID: 38395122 [TBL] [Abstract][Full Text] [Related]
7. Detergent-free Isolation of Functional G Protein-Coupled Receptors into Nanometric Lipid Particles. Logez C; Damian M; Legros C; Dupré C; Guéry M; Mary S; Wagner R; M'Kadmi C; Nosjean O; Fould B; Marie J; Fehrentz JA; Martinez J; Ferry G; Boutin JA; Banères JL Biochemistry; 2016 Jan; 55(1):38-48. PubMed ID: 26701065 [TBL] [Abstract][Full Text] [Related]
11. Membrane proteins: is the future disc shaped? Lee SC; Pollock NL Biochem Soc Trans; 2016 Aug; 44(4):1011-8. PubMed ID: 27528746 [TBL] [Abstract][Full Text] [Related]
12. An acid-compatible co-polymer for the solubilization of membranes and proteins into lipid bilayer-containing nanoparticles. Hall SCL; Tognoloni C; Charlton J; Bragginton ÉC; Rothnie AJ; Sridhar P; Wheatley M; Knowles TJ; Arnold T; Edler KJ; Dafforn TR Nanoscale; 2018 Jun; 10(22):10609-10619. PubMed ID: 29845165 [TBL] [Abstract][Full Text] [Related]
13. Structural characterization of styrene-maleic acid copolymer-lipid nanoparticles (SMALPs) using EPR spectroscopy. Bali AP; Sahu ID; Craig AF; Clark EE; Burridge KM; Dolan MT; Dabney-Smith C; Konkolewicz D; Lorigan GA Chem Phys Lipids; 2019 May; 220():6-13. PubMed ID: 30796886 [TBL] [Abstract][Full Text] [Related]
14. Differences in SMA-like polymer architecture dictate the conformational changes exhibited by the membrane protein rhodopsin encapsulated in lipid nano-particles. Grime RL; Logan RT; Nestorow SA; Sridhar P; Edwards PC; Tate CG; Klumperman B; Dafforn TR; Poyner DR; Reeves PJ; Wheatley M Nanoscale; 2021 Aug; 13(31):13519-13528. PubMed ID: 34477756 [TBL] [Abstract][Full Text] [Related]
15. Styrene/Maleic Acid Copolymers Form SMALPs by Pulling Lipid Patches out of the Lipid Bilayer. Orekhov PS; Bozdaganyan ME; Voskoboynikova N; Mulkidjanian AY; Steinhoff HJ; Shaitan KV Langmuir; 2019 Mar; 35(10):3748-3758. PubMed ID: 30773011 [TBL] [Abstract][Full Text] [Related]
16. Development of Styrene Maleic Acid Lipid Particles as a Tool for Studies of Phage-Host Interactions. de Jonge PA; Smit Sibinga DJC; Boright OA; Costa AR; Nobrega FL; Brouns SJJ; Dutilh BE J Virol; 2020 Nov; 94(23):. PubMed ID: 32938760 [TBL] [Abstract][Full Text] [Related]
17. Detergent-Free Membrane Protein Purification. Rothnie AJ Methods Mol Biol; 2016; 1432():261-7. PubMed ID: 27485341 [TBL] [Abstract][Full Text] [Related]
18. Solubilization of lipids and lipid phases by the styrene-maleic acid copolymer. Dominguez Pardo JJ; Dörr JM; Iyer A; Cox RC; Scheidelaar S; Koorengevel MC; Subramaniam V; Killian JA Eur Biophys J; 2017 Jan; 46(1):91-101. PubMed ID: 27815573 [TBL] [Abstract][Full Text] [Related]
19. Influence of Poly(styrene- co-maleic acid) Copolymer Structure on the Properties and Self-Assembly of SMALP Nanodiscs. Hall SCL; Tognoloni C; Price GJ; Klumperman B; Edler KJ; Dafforn TR; Arnold T Biomacromolecules; 2018 Mar; 19(3):761-772. PubMed ID: 29272585 [TBL] [Abstract][Full Text] [Related]
20. A method for detergent-free isolation of membrane proteins in their local lipid environment. Lee SC; Knowles TJ; Postis VL; Jamshad M; Parslow RA; Lin YP; Goldman A; Sridhar P; Overduin M; Muench SP; Dafforn TR Nat Protoc; 2016 Jul; 11(7):1149-62. PubMed ID: 27254461 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]