These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. A polyphosphoester conjugate of melphalan as antitumoral agent. Bogomilova A; Höhn M; Günther M; Herrmann A; Troev K; Wagner E; Schreiner L Eur J Pharm Sci; 2013 Nov; 50(3-4):410-9. PubMed ID: 23973888 [TBL] [Abstract][Full Text] [Related]
3. Anti-tumor activity of biodegradable polymer-paclitaxel conjugate micelles on Lewis lung cancer mice models. Wan Y; Zheng Y; Song X; Hu X; Liu S; Tong T; Jing X J Biomater Sci Polym Ed; 2011; 22(9):1131-46. PubMed ID: 20594407 [TBL] [Abstract][Full Text] [Related]
4. HPMA copolymer conjugates of paclitaxel and docetaxel with pH-controlled drug release. Etrych T; Sírová M; Starovoytova L; Ríhová B; Ulbrich K Mol Pharm; 2010 Aug; 7(4):1015-26. PubMed ID: 20518512 [TBL] [Abstract][Full Text] [Related]
5. Construction of polymer-paclitaxel conjugate linked via a disulfide bond. Yan Q; Yang Y; Chen W; Hu J; Yang D Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():580-5. PubMed ID: 26478347 [TBL] [Abstract][Full Text] [Related]
6. Well-Defined Redox-Sensitive Polyethene Glycol-Paclitaxel Prodrug Conjugate for Tumor-Specific Delivery of Paclitaxel Using Octreotide for Tumor Targeting. Yin T; Wu Q; Wang L; Yin L; Zhou J; Huo M Mol Pharm; 2015 Aug; 12(8):3020-31. PubMed ID: 26086430 [TBL] [Abstract][Full Text] [Related]
7. Thermosensitive poly(organophosphazene)-paclitaxel conjugate gels for antitumor applications. Chun C; Lee SM; Kim SY; Yang HK; Song SC Biomaterials; 2009 Apr; 30(12):2349-60. PubMed ID: 19178941 [TBL] [Abstract][Full Text] [Related]
8. Polyphosphoester nanoparticles as biodegradable platform for delivery of multiple drugs and siRNA. Elzeny H; Zhang F; Ali EN; Fathi HA; Zhang S; Li R; El-Mokhtar MA; Hamad MA; Wooley KL; Elsabahy M Drug Des Devel Ther; 2017; 11():483-496. PubMed ID: 28260861 [TBL] [Abstract][Full Text] [Related]
9. Reporter nanoparticle that monitors its anticancer efficacy in real time. Kulkarni A; Rao P; Natarajan S; Goldman A; Sabbisetti VS; Khater Y; Korimerla N; Chandrasekar V; Mashelkar RA; Sengupta S Proc Natl Acad Sci U S A; 2016 Apr; 113(15):E2104-13. PubMed ID: 27036008 [TBL] [Abstract][Full Text] [Related]
10. Targeted and intracellular delivery of paclitaxel using multi-functional polymeric micelles. Seow WY; Xue JM; Yang YY Biomaterials; 2007 Mar; 28(9):1730-40. PubMed ID: 17182095 [TBL] [Abstract][Full Text] [Related]
11. Poly-cyclodextrin and poly-paclitaxel nano-assembly for anticancer therapy. Namgung R; Mi Lee Y; Kim J; Jang Y; Lee BH; Kim IS; Sokkar P; Rhee YM; Hoffman AS; Kim WJ Nat Commun; 2014 May; 5():3702. PubMed ID: 24805848 [TBL] [Abstract][Full Text] [Related]
12. Novel free-paclitaxel-loaded redox-responsive nanoparticles based on a disulfide-linked poly(ethylene glycol)-drug conjugate for intracellular drug delivery: synthesis, characterization, and antitumor activity in vitro and in vivo. Chuan X; Song Q; Lin J; Chen X; Zhang H; Dai W; He B; Wang X; Zhang Q Mol Pharm; 2014 Oct; 11(10):3656-70. PubMed ID: 25208098 [TBL] [Abstract][Full Text] [Related]
13. Well-defined polymer-drug conjugate engineered with redox and pH-sensitive release mechanism for efficient delivery of paclitaxel. Lv S; Tang Z; Zhang D; Song W; Li M; Lin J; Liu H; Chen X J Control Release; 2014 Nov; 194():220-7. PubMed ID: 25220162 [TBL] [Abstract][Full Text] [Related]
14. Enhanced antitumor efficacy by d-glucosamine-functionalized and paclitaxel-loaded poly(ethylene glycol)-co-poly(trimethylene carbonate) polymer nanoparticles. Jiang X; Xin H; Gu J; Du F; Feng C; Xie Y; Fang X J Pharm Sci; 2014 May; 103(5):1487-96. PubMed ID: 24619482 [TBL] [Abstract][Full Text] [Related]
15. Thermoresponsive nanostructured polycarbonate block copolymers as biodegradable therapeutic delivery carriers. Kim SH; Tan JP; Fukushima K; Nederberg F; Yang YY; Waymouth RM; Hedrick JL Biomaterials; 2011 Aug; 32(23):5505-14. PubMed ID: 21529935 [TBL] [Abstract][Full Text] [Related]
16. Efficacy of poly(sebacic acid-co-ricinoleic acid) biodegradable delivery system for intratumoral delivery of paclitaxel. Shikanov A; Vaisman B; Shikanov S; Domb AJ J Biomed Mater Res A; 2010 Mar; 92(4):1283-91. PubMed ID: 19343769 [TBL] [Abstract][Full Text] [Related]
17. Expansile nanoparticles: synthesis, characterization, and in vivo efficacy of an acid-responsive polymeric drug delivery system. Griset AP; Walpole J; Liu R; Gaffey A; Colson YL; Grinstaff MW J Am Chem Soc; 2009 Feb; 131(7):2469-71. PubMed ID: 19182897 [TBL] [Abstract][Full Text] [Related]
18. Improving paclitaxel delivery: in vitro and in vivo characterization of PEGylated polyphosphoester-based nanocarriers. Zhang F; Zhang S; Pollack SF; Li R; Gonzalez AM; Fan J; Zou J; Leininger SE; Pavía-Sanders A; Johnson R; Nelson LD; Raymond JE; Elsabahy M; Hughes DM; Lenox MW; Gustafson TP; Wooley KL J Am Chem Soc; 2015 Feb; 137(5):2056-66. PubMed ID: 25629952 [TBL] [Abstract][Full Text] [Related]
19. Paclitaxel loaded folic acid targeted nanoparticles of mixed lipid-shell and polymer-core: in vitro and in vivo evaluation. Zhao P; Wang H; Yu M; Liao Z; Wang X; Zhang F; Ji W; Wu B; Han J; Zhang H; Wang H; Chang J; Niu R Eur J Pharm Biopharm; 2012 Jun; 81(2):248-56. PubMed ID: 22446630 [TBL] [Abstract][Full Text] [Related]
20. pH and glutathion-responsive hydrogel for localized delivery of paclitaxel. Pérez E; Fernández A; Olmo R; Teijón JM; Blanco MD Colloids Surf B Biointerfaces; 2014 Apr; 116():247-56. PubMed ID: 24491841 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]