These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 27069549)

  • 21. Decreased Blood Level of MFSD2a as a Potential Biomarker of Alzheimer's Disease.
    Sánchez-Campillo M; Ruiz-Pastor MJ; Gázquez A; Marín-Muñoz J; Noguera-Perea F; Ruiz-Alcaraz AJ; Manzanares-Sánchez S; Antúnez C; Larqué E
    Int J Mol Sci; 2019 Dec; 21(1):. PubMed ID: 31861865
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Accurate Mass GC/LC-Quadrupole Time of Flight Mass Spectrometry Analysis of Fatty Acids and Triacylglycerols of Spicy Fruits from the Apiaceae Family.
    Nguyen T; Aparicio M; Saleh MA
    Molecules; 2015 Dec; 20(12):21421-32. PubMed ID: 26633337
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Serum fatty acid profiles using GC-MS and multivariate statistical analysis: potential biomarkers of Alzheimer's disease.
    Wang DC; Sun CH; Liu LY; Sun XH; Jin XW; Song WL; Liu XQ; Wan XL
    Neurobiol Aging; 2012 Jun; 33(6):1057-66. PubMed ID: 20980076
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Blood fatty acids in Alzheimer's disease and mild cognitive impairment: A meta-analysis and systematic review.
    Hosseini M; Poljak A; Braidy N; Crawford J; Sachdev P
    Ageing Res Rev; 2020 Jul; 60():101043. PubMed ID: 32194194
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Targeted metabolomics analysis reveals the association between maternal folic acid supplementation and fatty acids and amino acids profiles in rat pups.
    Liu Z; Liu R; Chou J; Yu J; Liu X; Sun C; Li Y; Liu L
    J Chromatogr B Analyt Technol Biomed Life Sci; 2018 Jul; 1090():101-109. PubMed ID: 29803868
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nucleic acid oxidation: an early feature of Alzheimer's disease.
    Bradley-Whitman MA; Timmons MD; Beckett TL; Murphy MP; Lynn BC; Lovell MA
    J Neurochem; 2014 Jan; 128(2):294-304. PubMed ID: 24032632
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification and Quantification of Fatty Acids in
    Wathne AM; Devle H; Naess-Andresen CF; Ekeberg D
    J Lipids; 2018; 2018():3679247. PubMed ID: 29682353
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of Alterations of Post-Mortem Delay and Other Tissue-Collection Variables on Metabolite Levels in Human and Rat Brain.
    Scholefield M; Church SJ; Xu J; Robinson AC; Gardiner NJ; Roncaroli F; Hooper NM; Unwin RD; Cooper GJS
    Metabolites; 2020 Oct; 10(11):. PubMed ID: 33138273
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ultra-performance liquid chromatography-mass spectrometry for precise fatty acid profiling of oilseed crops.
    Chernova A; Mazin P; Goryunova S; Goryunov D; Demurin Y; Gorlova L; Vanyushkina A; Mair W; Anikanov N; Yushina E; Pavlova A; Martynova E; Garkusha S; Mukhina Z; Savenko E; Khaitovich P
    PeerJ; 2019; 7():e6547. PubMed ID: 30863679
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The plasma peptides of Alzheimer's disease.
    Florentinus-Mefailoski A; Bowden P; Scheltens P; Killestein J; Teunissen C; Marshall JG
    Clin Proteomics; 2021 Jun; 18(1):17. PubMed ID: 34182925
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The use of 2-dimensional gas chromatography to investigate the effect of rumen-protected conjugated linoleic acid, breed, and lactation stage on the fatty acid profile of sheep milk.
    Pellattiero E; Cecchinato A; Tagliapietra F; Schiavon S; Bittante G
    J Dairy Sci; 2015 Apr; 98(4):2088-102. PubMed ID: 25648807
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Metabolic disorders of fatty acids and fatty acid amides associated with human gastric cancer morbidity.
    Song H; Peng JS; Yao DS; Liu DL; Yang ZL; Du YP; Xiang J
    Chin Med J (Engl); 2012 Mar; 125(5):757-63. PubMed ID: 22490569
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The antifungal activity of the cuticular and internal fatty acid methyl esters and alcohols in Calliphora vomitoria.
    Gołębiowski M; Cerkowniak M; Dawgul M; Kamysz W; Boguś MI; Stepnowski P
    Parasitology; 2013 Jul; 140(8):972-85. PubMed ID: 23561808
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identification of fatty acids in fishes collected from the Ohio River using gas chromatography-mass spectrometry in chemical ionization and electron impact modes.
    Dayhuff LE; Wells MJ
    J Chromatogr A; 2005 Dec; 1098(1-2):144-9. PubMed ID: 16314171
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A gas chromatography/electron ionization-mass spectrometry-selected ion monitoring method for determining the fatty acid pattern in food after formation of fatty acid methyl esters.
    Thurnhofer S; Vetter W
    J Agric Food Chem; 2005 Nov; 53(23):8896-903. PubMed ID: 16277380
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Annual evolution of fatty acid profile from muscle lipids of the common carp (Cyprinus carpio) in Madagascar inland waters.
    Rasoarahona JR; Barnathan G; Bianchini JP; Gaydou EM
    J Agric Food Chem; 2004 Dec; 52(24):7339-44. PubMed ID: 15563217
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Analysis of non-esterified fatty acids in human samples by solid-phase-extraction and gas chromatography/mass spectrometry.
    Kopf T; Schmitz G
    J Chromatogr B Analyt Technol Biomed Life Sci; 2013 Nov; 938():22-6. PubMed ID: 24036177
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Gas chromatography/electron-capture negative ion mass spectrometry for the quantitative determination of 2- and 3-hydroxy fatty acids in bovine milk fat.
    Jenske R; Vetter W
    J Agric Food Chem; 2008 Jul; 56(14):5500-5. PubMed ID: 18570427
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Determination of fatty acid methyl esters by GC-triple quadrupole MS using electron and chemical ionization.
    Xu YJ; Zhang J
    Bioanalysis; 2013 Jun; 5(12):1527-43. PubMed ID: 23795931
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dietary DHA supplementation causes selective changes in phospholipids from different brain regions in both wild type mice and the Tg2576 mouse model of Alzheimer's disease.
    Bascoul-Colombo C; Guschina IA; Maskrey BH; Good M; O'Donnell VB; Harwood JL
    Biochim Biophys Acta; 2016 Jun; 1861(6):524-37. PubMed ID: 26968097
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.