These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 27069590)

  • 1. Optimal hurricane overwash thickness for maximizing marsh resilience to sea level rise.
    Walters DC; Kirwan ML
    Ecol Evol; 2016 May; 6(9):2948-56. PubMed ID: 27069590
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Will fluctuations in salt marsh-mangrove dominance alter vulnerability of a subtropical wetland to sea-level rise?
    McKee KL; Vervaeke WC
    Glob Chang Biol; 2018 Mar; 24(3):1224-1238. PubMed ID: 29044820
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling tidal marsh distribution with sea-level rise: evaluating the role of vegetation, sediment, and upland habitat in marsh resiliency.
    Schile LM; Callaway JC; Morris JT; Stralberg D; Parker VT; Kelly M
    PLoS One; 2014; 9(2):e88760. PubMed ID: 24551156
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extreme Precipitation and Flooding Contribute to Sudden Vegetation Dieback in a Coastal Salt Marsh.
    Stagg CL; Osland MJ; Moon JA; Feher LC; Laurenzano C; Lane TC; Jones WR; Hartley SB
    Plants (Basel); 2021 Sep; 10(9):. PubMed ID: 34579374
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controls on resilience and stability in a sediment-subsidized salt marsh.
    Stagg CL; Mendelssohn IA
    Ecol Appl; 2011 Jul; 21(5):1731-44. PubMed ID: 21830714
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Connectivity in coastal systems: Barrier island vegetation influences upland migration in a changing climate.
    Zinnert JC; Via SM; Nettleton BP; Tuley PA; Moore LJ; Stallins JA
    Glob Chang Biol; 2019 Jul; 25(7):2419-2430. PubMed ID: 30932269
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Presence of the Herbaceous Marsh Species
    Stagg CL; Laurenzano C; Vervaeke WC; Krauss KW; McKee KL
    Plants (Basel); 2022 May; 11(9):. PubMed ID: 35567260
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Barrier island morphology and sediment characteristics affect the recovery of dune building grasses following storm-induced overwash.
    Brantley ST; Bissett SN; Young DR; Wolner CW; Moore LJ
    PLoS One; 2014; 9(8):e104747. PubMed ID: 25148028
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wetland loss patterns and inundation-productivity relationships prognosticate widespread salt for southern New England.
    Watson EB; Wigand C; Davey EW; Andrews HM; Bishop J; Raposa KB
    Estuaries Coast; 2017 May; 40(3):662-681. PubMed ID: 30008627
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic responses and implications to coastal wetlands and the surrounding regions under sea level rise.
    Alizad K; Hagen SC; Medeiros SC; Bilskie MV; Morris JT; Balthis L; Buckel CA
    PLoS One; 2018; 13(10):e0205176. PubMed ID: 30312304
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Valuing natural habitats for enhancing coastal resilience: Wetlands reduce property damage from storm surge and sea level rise.
    Rezaie AM; Loerzel J; Ferreira CM
    PLoS One; 2020; 15(1):e0226275. PubMed ID: 31940378
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid shoreward encroachment of salt marsh cordgrass in response to accelerated sea-level rise.
    Donnelly JP; Bertness MD
    Proc Natl Acad Sci U S A; 2001 Dec; 98(25):14218-23. PubMed ID: 11724926
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbon burial and storage in tropical salt marshes under the influence of sea level rise.
    Ruiz-Fernández AC; Carnero-Bravo V; Sanchez-Cabeza JA; Pérez-Bernal LH; Amaya-Monterrosa OA; Bojórquez-Sánchez S; López-Mendoza PG; Cardoso-Mohedano JG; Dunbar RB; Mucciarone DA; Marmolejo-Rodríguez AJ
    Sci Total Environ; 2018 Jul; 630():1628-1640. PubMed ID: 29554779
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anthropocene survival of southern New England's salt marshes.
    Watson EB; Raposa KB; Carey JC; Wigand C; Warren RS
    Estuaries Coast; 2017 May; 40(3):617-625. PubMed ID: 30271312
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatial response of coastal marshes to increased atmospheric CO2.
    Ratliff KM; Braswell AE; Marani M
    Proc Natl Acad Sci U S A; 2015 Dec; 112(51):15580-4. PubMed ID: 26644577
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stochastic dynamics of barrier island elevation.
    Vinent OD; Schaffer BE; Rodriguez-Iturbe I
    Proc Natl Acad Sci U S A; 2021 Jan; 118(1):. PubMed ID: 33443196
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hazardous and contaminated sites within salt marsh migration corridors in Rhode Island, USA.
    Burman E; Mulvaney K; Merrill N; Bradley M; Wigand C
    J Environ Manage; 2023 Apr; 331():117218. PubMed ID: 36640648
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The gathering storm: optimizing management of coastal ecosystems in the face of a climate-driven threat.
    Hanley ME; Bouma TJ; Mossman HL
    Ann Bot; 2020 Feb; 125(2):197-212. PubMed ID: 31837218
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resistance, resilience, and recovery of salt marshes in the Florida Panhandle following Hurricane Michael.
    Castagno KA; Tomiczek T; Shepard CC; Beck MW; Bowden AA; O'Donnell K; Scyphers SB
    Sci Rep; 2021 Oct; 11(1):20381. PubMed ID: 34650127
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A climate change adaptation strategy for management of coastal marsh systems.
    Wigand C; Ardito T; Chaffee C; Ferguson W; Paton S; Raposa K; Vandemoer C; Watson E
    Estuaries Coast; 2017 Jan; 40(3):682-693. PubMed ID: 30271313
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.