BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 27070131)

  • 1. Evaluating the Combined Toxicity of Cu and ZnO Nanoparticles: Utility of the Concept of Additivity and a Nested Experimental Design.
    Liu Y; Baas J; Peijnenburg WJ; Vijver MG
    Environ Sci Technol; 2016 May; 50(10):5328-37. PubMed ID: 27070131
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of natural organic matter on the joint toxicity and accumulation of Cu nanoparticles and ZnO nanoparticles in Daphnia magna.
    Yu Q; Wang Z; Wang G; Peijnenburg WJGM; Vijver MG
    Environ Pollut; 2022 Jan; 292(Pt B):118413. PubMed ID: 34751154
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acute toxicity evaluation of nanoparticles mixtures using luminescent bacteria.
    Zhang H; Shi J; Su Y; Li W; Wilkinson KJ; Xie B
    Environ Monit Assess; 2020 Jul; 192(8):484. PubMed ID: 32617676
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acute toxic effects caused by the co-exposure of nanoparticles of ZnO and Cu in rainbow trout.
    Hernández-Moreno D; Valdehita A; Conde E; Rucandio I; Navas JM; Fernández-Cruz ML
    Sci Total Environ; 2019 Oct; 687():24-33. PubMed ID: 31202010
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toxicity and accumulation of Cu and ZnO nanoparticles in Daphnia magna.
    Xiao Y; Vijver MG; Chen G; Peijnenburg WJ
    Environ Sci Technol; 2015 Apr; 49(7):4657-64. PubMed ID: 25785366
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Comparative In Vivo Scrutiny of Biosynthesized Copper and Zinc Oxide Nanoparticles by Intraperitoneal and Intravenous Administration Routes in Rats.
    C A; K Handral H; Kelmani R C
    Nanoscale Res Lett; 2018 Apr; 13(1):93. PubMed ID: 29616363
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modelling metal-metal interactions and metal toxicity to lettuce Lactuca sativa following mixture exposure (Cu²⁺-Zn²⁺ and Cu²⁺-Ag⁺).
    Le TT; Vijver MG; Kinraide TB; Peijnenburg WJ; Hendriks AJ
    Environ Pollut; 2013 May; 176():185-92. PubMed ID: 23429096
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparing three approaches in extending biotic ligand models to predict the toxicity of binary metal mixtures (Cu-Ni, Cu-Zn and Cu-Ag) to lettuce (Lactuca sativa L.).
    Liu Y; Vijver MG; Peijnenburg WJ
    Chemosphere; 2014 Oct; 112():282-8. PubMed ID: 25048917
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The potentiation effect makes the difference: non-toxic concentrations of ZnO nanoparticles enhance Cu nanoparticle toxicity in vitro.
    Li L; Fernández-Cruz ML; Connolly M; Conde E; Fernández M; Schuster M; Navas JM
    Sci Total Environ; 2015 Feb; 505():253-60. PubMed ID: 25461026
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of morphological, molecular and nutrient status in Arabidopsis thaliana seedlings in response to ZnO nanoparticles and Zn ion exposure.
    Nair PMG; Chung IM
    Sci Total Environ; 2017 Jan; 575():187-198. PubMed ID: 27741454
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physiologically based pharmacokinetic modeling of zinc oxide nanoparticles and zinc nitrate in mice.
    Chen WY; Cheng YH; Hsieh NH; Wu BC; Chou WC; Ho CC; Chen JK; Liao CM; Lin P
    Int J Nanomedicine; 2015; 10():6277-92. PubMed ID: 26491297
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Combined Effect of ZnO and CeO
    Skiba E; Pietrzak M; Glińska S; Wolf WM
    Cells; 2021 Nov; 10(11):. PubMed ID: 34831328
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toxicity of mixtures of zinc oxide and graphene oxide nanoparticles to aquatic organisms of different trophic level: particles outperform dissolved ions.
    Ye N; Wang Z; Wang S; Peijnenburg WJGM
    Nanotoxicology; 2018 Jun; 12(5):423-438. PubMed ID: 29658385
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantification of metal uptake in Spinacia oleracea irrigated with water containing a mixture of CuO and ZnO nanoparticles.
    Singh D; Kumar A
    Chemosphere; 2020 Mar; 243():125239. PubMed ID: 31733544
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms underlying the enhancement of toxicity caused by the coincubation of zinc oxide and copper nanoparticles in a fish hepatoma cell line.
    Hernández-Moreno D; Li L; Connolly M; Conde E; Fernández M; Schuster M; Navas JM; Fernández-Cruz ML
    Environ Toxicol Chem; 2016 Oct; 35(10):2562-2570. PubMed ID: 26970269
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of zinc oxide nanoparticles on lettuce (Lactuca sativa L.) growth and soil bacterial community.
    Xu J; Luo X; Wang Y; Feng Y
    Environ Sci Pollut Res Int; 2018 Feb; 25(6):6026-6035. PubMed ID: 29238929
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling toxicity of binary metal mixtures (Cu(2+) -Ag(+) , Cu(2+) -Zn(2+) ) to lettuce, Lactuca sativa, with the biotic ligand model.
    Yen Le TT; Vijver MG; Jan Hendriks A; Peijnenburg WJ
    Environ Toxicol Chem; 2013 Jan; 32(1):137-43. PubMed ID: 23109233
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of copper, silver and zinc nanoparticles against foliar and soil-borne plant pathogens.
    Malandrakis AA; Kavroulakis N; Chrysikopoulos CV
    Sci Total Environ; 2019 Jun; 670():292-299. PubMed ID: 30903901
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nano-CuO and interaction with nano-ZnO or soil bacterium provide evidence for the interference of nanoparticles in metal nutrition of plants.
    Dimkpa CO; McLean JE; Britt DW; Anderson AJ
    Ecotoxicology; 2015 Jan; 24(1):119-29. PubMed ID: 25297564
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combined effects of zinc oxide nanoparticles and melatonin on wheat growth, chlorophyll contents, cadmium (Cd) and zinc uptake under Cd stress.
    Chen F; Li Y; Zia-Ur-Rehman M; Hussain SM; Qayyum MF; Rizwan M; Alharby HF; Alabdallah NM; Alharbi BM; Ali S
    Sci Total Environ; 2023 Mar; 864():161061. PubMed ID: 36565889
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.