These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 27070239)

  • 1. Fully Automated Field-Deployable Bioaerosol Monitoring System Using Carbon Nanotube-Based Biosensors.
    Kim J; Jin JH; Kim HS; Song W; Shin SK; Yi H; Jang DH; Shin S; Lee BY
    Environ Sci Technol; 2016 May; 50(10):5163-71. PubMed ID: 27070239
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toward the Commercialization of Carbon Nanotube Field Effect Transistor Biosensors.
    Li Z; Xiao M; Jin C; Zhang Z
    Biosensors (Basel); 2023 Feb; 13(3):. PubMed ID: 36979538
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Label-free protein biosensor based on aptamer-modified carbon nanotube field-effect transistors.
    Maehashi K; Katsura T; Kerman K; Takamura Y; Matsumoto K; Tamiya E
    Anal Chem; 2007 Jan; 79(2):782-7. PubMed ID: 17222052
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzyme assays using sensor arrays based on ion-selective carbon nanotube field-effect transistors.
    Melzer K; Bhatt VD; Jaworska E; Mittermeier R; Maksymiuk K; Michalska A; Lugli P
    Biosens Bioelectron; 2016 Oct; 84():7-14. PubMed ID: 27140308
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon Nanotube Field-Effect Transistor-Based Chemical and Biological Sensors.
    Yao X; Zhang Y; Jin W; Hu Y; Cui Y
    Sensors (Basel); 2021 Feb; 21(3):. PubMed ID: 33540641
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancement of sensitivity and specificity by surface modification of carbon nanotubes in diagnosis of prostate cancer based on carbon nanotube field effect transistors.
    Kim JP; Lee BY; Lee J; Hong S; Sim SJ
    Biosens Bioelectron; 2009 Jul; 24(11):3372-8. PubMed ID: 19481922
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrasensitive carbon nanotube-based biosensors using antibody-binding fragments.
    Kim JP; Lee BY; Hong S; Sim SJ
    Anal Biochem; 2008 Oct; 381(2):193-8. PubMed ID: 18640089
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Random CNT network and regioregular poly(3-hexylthiophen) FETs for pH sensing applications: a comparison.
    Münzer AM; Melzer K; Heimgreiter M; Scarpa G
    Biochim Biophys Acta; 2013 Sep; 1830(9):4353-8. PubMed ID: 23395843
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Portable automatic bioaerosol sampling system for rapid on-site detection of targeted airborne microorganisms.
    Usachev EV; Pankova AV; Rafailova EA; Pyankov OV; Agranovski IE
    J Environ Monit; 2012 Oct; 14(10):2739-45. PubMed ID: 22951953
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly selective and sensitive detection of neurotransmitters using receptor-modified single-walled carbon nanotube sensors.
    Kim B; Song HS; Jin HJ; Park EJ; Lee SH; Lee BY; Park TH; Hong S
    Nanotechnology; 2013 Jul; 24(28):285501. PubMed ID: 23792421
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Review: Carbon nanotube based electrochemical sensors for biomolecules.
    Jacobs CB; Peairs MJ; Venton BJ
    Anal Chim Acta; 2010 Mar; 662(2):105-27. PubMed ID: 20171310
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Airborne viable, non-viable, and allergenic fungi in a rural agricultural area of India: a 2-year study at five outdoor sampling stations.
    Adhikari A; Sen MM; Gupta-Bhattacharya S; Chanda S
    Sci Total Environ; 2004 Jun; 326(1-3):123-41. PubMed ID: 15142771
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct analysis of airborne mite allergen (Der f1) in the residential atmosphere by chemifluorescent immunoassay using bioaerosol sampler.
    Miyajima K; Suzuki Y; Miki D; Arai M; Arakawa T; Shimomura H; Shiba K; Mitsubayashi K
    Talanta; 2014 Jun; 123():241-6. PubMed ID: 24725888
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective and sensitive TNT sensors using biomimetic polydiacetylene-coated CNT-FETs.
    Kim TH; Lee BY; Jaworski J; Yokoyama K; Chung WJ; Wang E; Hong S; Majumdar A; Lee SW
    ACS Nano; 2011 Apr; 5(4):2824-30. PubMed ID: 21361351
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Technological Perspectives in Developing Carbon Nanotube-based DNA-modified Biosensors].
    Komarov IA; Bobrinetskiy II; Golovin AV; Zalevsky AO; Aydarkhanov RD
    Biofizika; 2015; 60(5):877-82. PubMed ID: 26591597
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biosensors for Monitoring Airborne Pathogens.
    Fronczek CF; Yoon JY
    J Lab Autom; 2015 Aug; 20(4):390-410. PubMed ID: 25862683
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aptamer sandwich-based carbon nanotube sensors for single-carbon-atomic-resolution detection of non-polar small molecular species.
    Lee J; Jo M; Kim TH; Ahn JY; Lee DK; Kim S; Hong S
    Lab Chip; 2011 Jan; 11(1):52-6. PubMed ID: 20967396
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of an automated wet-cyclone system for rapid, continuous and enriched bioaerosol sampling and its application to real-time detection.
    Cho YS; Hong SC; Choi J; Jung JH
    Sens Actuators B Chem; 2019 Apr; 284():525-533. PubMed ID: 32288254
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of fungal species, cultivation time, growth substrate, and air exposure velocity on the fluorescence properties of airborne fungal spores.
    Saari S; Mensah-Attipoe J; Reponen T; Veijalainen AM; Salmela A; Pasanen P; Keskinen J
    Indoor Air; 2015 Dec; 25(6):653-61. PubMed ID: 25292152
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrochemical sensors and biosensors based on redox polymer/carbon nanotube modified electrodes: a review.
    Barsan MM; Ghica ME; Brett CM
    Anal Chim Acta; 2015 Jun; 881():1-23. PubMed ID: 26041516
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.