BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 27070271)

  • 41. Plasma membrane cyclic nucleotide gated calcium channels control land plant thermal sensing and acquired thermotolerance.
    Finka A; Cuendet AF; Maathuis FJ; Saidi Y; Goloubinoff P
    Plant Cell; 2012 Aug; 24(8):3333-48. PubMed ID: 22904147
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Beat the heat: plant- and microbe-mediated strategies for crop thermotolerance.
    Shekhawat K; Almeida-Trapp M; García-Ramírez GX; Hirt H
    Trends Plant Sci; 2022 Aug; 27(8):802-813. PubMed ID: 35331665
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Feeling the heat: discovery of a feedback loop regulating thermotolerance in tomato and Arabidopsis.
    Pierroz G
    Plant J; 2022 Oct; 112(1):5-6. PubMed ID: 36189500
    [No Abstract]   [Full Text] [Related]  

  • 44. Sumoylation of Arabidopsis heat shock factor A2 (HsfA2) modifies its activity during acquired thermotholerance.
    Cohen-Peer R; Schuster S; Meiri D; Breiman A; Avni A
    Plant Mol Biol; 2010 Sep; 74(1-2):33-45. PubMed ID: 20521085
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A heat-inducible transcription factor, HsfA2, is required for extension of acquired thermotolerance in Arabidopsis.
    Charng YY; Liu HC; Liu NY; Chi WT; Wang CN; Chang SH; Wang TT
    Plant Physiol; 2007 Jan; 143(1):251-62. PubMed ID: 17085506
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Ectopic over-expression of HaFT-1, a 14-3-3 protein from Haloxylon ammodendron, enhances acquired thermotolerance in transgenic Arabidopsis.
    Pan R; Ren W; Liu S; Zhang H; Deng X; Wang B
    Plant Mol Biol; 2023 Jul; 112(4-5):261-277. PubMed ID: 37341869
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The calmodulin-binding protein kinase 3 is part of heat-shock signal transduction in Arabidopsis thaliana.
    Liu HT; Gao F; Li GL; Han JL; Liu DL; Sun DY; Zhou RG
    Plant J; 2008 Sep; 55(5):760-73. PubMed ID: 18466301
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Transcriptional regulation of heat shock proteins and ascorbate peroxidase by CtHsfA2b from African bermudagrass conferring heat tolerance in Arabidopsis.
    Wang X; Huang W; Yang Z; Liu J; Huang B
    Sci Rep; 2016 Jun; 6():28021. PubMed ID: 27320381
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Ectopic expression of Arabidopsis glutaredoxin AtGRXS17 enhances thermotolerance in tomato.
    Wu Q; Lin J; Liu JZ; Wang X; Lim W; Oh M; Park J; Rajashekar CB; Whitham SA; Cheng NH; Hirschi KD; Park S
    Plant Biotechnol J; 2012 Oct; 10(8):945-55. PubMed ID: 22762155
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A conserved HSF:miR169:NF-YA loop involved in tomato and Arabidopsis heat stress tolerance.
    Rao S; Gupta A; Bansal C; Sorin C; Crespi M; Mathur S
    Plant J; 2022 Oct; 112(1):7-26. PubMed ID: 36050841
    [TBL] [Abstract][Full Text] [Related]  

  • 51. NFXL1 functions as a transcriptional activator required for thermotolerance at reproductive stage in Arabidopsis.
    Zhu QY; Zhang LL; Liu JX
    J Integr Plant Biol; 2024 Jan; 66(1):54-65. PubMed ID: 38141041
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Glucose-Regulated
    Sharma M; Banday ZZ; Shukla BN; Laxmi A
    Plant Physiol; 2019 Jun; 180(2):1081-1100. PubMed ID: 30890662
    [TBL] [Abstract][Full Text] [Related]  

  • 53. HsfA7 coordinates the transition from mild to strong heat stress response by controlling the activity of the master regulator HsfA1a in tomato.
    Mesihovic A; Ullrich S; Rosenkranz RRE; Gebhardt P; Bublak D; Eich H; Weber D; Berberich T; Scharf KD; Schleiff E; Fragkostefanakis S
    Cell Rep; 2022 Jan; 38(2):110224. PubMed ID: 35021091
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The miR165/166-PHABULOSA module promotes thermotolerance by transcriptionally and posttranslationally regulating HSFA1.
    Li J; Cao Y; Zhang J; Zhu C; Tang G; Yan J
    Plant Cell; 2023 Aug; 35(8):2952-2971. PubMed ID: 37132478
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Two interacting ethylene response factors regulate heat stress response.
    Huang J; Zhao X; Bürger M; Wang Y; Chory J
    Plant Cell; 2021 Apr; 33(2):338-357. PubMed ID: 33793870
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Arabidopsis HSFA9 Acts as a Regulator of Heat Response Gene Expression and the Acquisition of Thermotolerance and Seed Longevity.
    Wang X; Zhu Y; Tang L; Wang Y; Sun R; Deng X
    Plant Cell Physiol; 2024 Apr; 65(3):372-389. PubMed ID: 38123450
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Ectopic overexpression of TaHsfA5 promotes thermomorphogenesis in Arabidopsis thaliana and thermotolerance in Oryza sativa.
    Samtani H; Sharma A; Khurana P
    Plant Mol Biol; 2023 Jul; 112(4-5):225-243. PubMed ID: 37166615
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Downregulation of CSD2 by a heat-inducible miR398 is required for thermotolerance in Arabidopsis.
    Lu X; Guan Q; Zhu J
    Plant Signal Behav; 2013 Aug; 8(8):. PubMed ID: 23733060
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Mutations in an Arabidopsis mitochondrial transcription termination factor-related protein enhance thermotolerance in the absence of the major molecular chaperone HSP101.
    Kim M; Lee U; Small I; des Francs-Small CC; Vierling E
    Plant Cell; 2012 Aug; 24(8):3349-65. PubMed ID: 22942382
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Arabidopsis HsfB1 and HsfB2b act as repressors of the expression of heat-inducible Hsfs but positively regulate the acquired thermotolerance.
    Ikeda M; Mitsuda N; Ohme-Takagi M
    Plant Physiol; 2011 Nov; 157(3):1243-54. PubMed ID: 21908690
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.