These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
291 related articles for article (PubMed ID: 27070483)
1. Sex-related differences in long-term pulmonary outcomes of neonatal hyperoxia in mice. Namba F; Ogawa R; Ito M; Watanabe T; Dennery PA; Tamura M Exp Lung Res; 2016; 42(2):57-65. PubMed ID: 27070483 [TBL] [Abstract][Full Text] [Related]
2. Altered small airways in aged mice following neonatal exposure to hyperoxic gas. O'Reilly M; Harding R; Sozo F Neonatology; 2014; 105(1):39-45. PubMed ID: 24281398 [TBL] [Abstract][Full Text] [Related]
4. Inhibition of β-catenin signaling improves alveolarization and reduces pulmonary hypertension in experimental bronchopulmonary dysplasia. Alapati D; Rong M; Chen S; Hehre D; Hummler SC; Wu S Am J Respir Cell Mol Biol; 2014 Jul; 51(1):104-13. PubMed ID: 24484510 [TBL] [Abstract][Full Text] [Related]
5. Deficits in lung alveolarization and function after systemic maternal inflammation and neonatal hyperoxia exposure. Velten M; Heyob KM; Rogers LK; Welty SE J Appl Physiol (1985); 2010 May; 108(5):1347-56. PubMed ID: 20223995 [TBL] [Abstract][Full Text] [Related]
6. Loss of microRNA-30a and sex-specific effects on the neonatal hyperoxic lung injury. Grimm SL; Reddick S; Dong X; Leek C; Wang AX; Gutierrez MC; Hartig SM; Moorthy B; Coarfa C; Lingappan K Biol Sex Differ; 2023 Aug; 14(1):50. PubMed ID: 37553579 [TBL] [Abstract][Full Text] [Related]
7. Expression and activity of epithelial sodium channel in hyperoxia-induced bronchopulmonary dysplasia in neonatal rats. Ji W; Fu J; Nie H; Xue X Pediatr Int; 2012 Dec; 54(6):735-42. PubMed ID: 22591391 [TBL] [Abstract][Full Text] [Related]
8. Long-term effects of recurrent intermittent hypoxia and hyperoxia on respiratory system mechanics in neonatal mice. Dylag AM; Mayer CA; Raffay TM; Martin RJ; Jafri A; MacFarlane PM Pediatr Res; 2017 Apr; 81(4):565-571. PubMed ID: 27842056 [TBL] [Abstract][Full Text] [Related]
9. Hepatocyte growth factor treatment improves alveolarization in a newborn murine model of bronchopulmonary dysplasia. Ohki Y; Mayuzumi H; Tokuyama K; Yoshizawa Y; Arakawa H; Mochizuki H; Morikawa A Neonatology; 2009; 95(4):332-8. PubMed ID: 19122464 [TBL] [Abstract][Full Text] [Related]
10. Quercetin attenuates the hyperoxic lung injury in neonatal mice: Implications for Bronchopulmonary dysplasia (BPD). Maturu P; Wei-Liang Y; Androutsopoulos VP; Jiang W; Wang L; Tsatsakis AM; Couroucli XI Food Chem Toxicol; 2018 Apr; 114():23-33. PubMed ID: 29432836 [TBL] [Abstract][Full Text] [Related]
11. Neonatal periostin knockout mice are protected from hyperoxia-induced alveolar simplication. Bozyk PD; Bentley JK; Popova AP; Anyanwu AC; Linn MD; Goldsmith AM; Pryhuber GS; Moore BB; Hershenson MB PLoS One; 2012; 7(2):e31336. PubMed ID: 22363622 [TBL] [Abstract][Full Text] [Related]
12. Hypoxic stress exacerbates hyperoxia-induced lung injury in a neonatal mouse model of bronchopulmonary dysplasia. Ratner V; Slinko S; Utkina-Sosunova I; Starkov A; Polin RA; Ten VS Neonatology; 2009; 95(4):299-305. PubMed ID: 19052476 [TBL] [Abstract][Full Text] [Related]
13. Endothelial to mesenchymal transition during neonatal hyperoxia-induced pulmonary hypertension. Gong J; Feng Z; Peterson AL; Carr JF; Vang A; Braza J; Choudhary G; Dennery PA; Yao H J Pathol; 2020 Dec; 252(4):411-422. PubMed ID: 32815166 [TBL] [Abstract][Full Text] [Related]
14. Hyperoxia modulates TGF-beta/BMP signaling in a mouse model of bronchopulmonary dysplasia. Alejandre-Alcázar MA; Kwapiszewska G; Reiss I; Amarie OV; Marsh LM; Sevilla-Pérez J; Wygrecka M; Eul B; Köbrich S; Hesse M; Schermuly RT; Seeger W; Eickelberg O; Morty RE Am J Physiol Lung Cell Mol Physiol; 2007 Feb; 292(2):L537-49. PubMed ID: 17071723 [TBL] [Abstract][Full Text] [Related]
15. Airway Remodeling and Hyperreactivity in a Model of Bronchopulmonary Dysplasia and Their Modulation by IL-1 Receptor Antagonist. Royce SG; Nold MF; Bui C; Donovan C; Lam M; Lamanna E; Rudloff I; Bourke JE; Nold-Petry CA Am J Respir Cell Mol Biol; 2016 Dec; 55(6):858-868. PubMed ID: 27482635 [TBL] [Abstract][Full Text] [Related]
16. Bronchiolar remodeling in adult mice following neonatal exposure to hyperoxia: relation to growth. O'Reilly M; Hansbro PM; Horvat JC; Beckett EL; Harding R; Sozo F Anat Rec (Hoboken); 2014 Apr; 297(4):758-69. PubMed ID: 24443274 [TBL] [Abstract][Full Text] [Related]
17. MicroRNA-30a as a candidate underlying sex-specific differences in neonatal hyperoxic lung injury: implications for BPD. Zhang Y; Coarfa C; Dong X; Jiang W; Hayward-Piatkovskyi B; Gleghorn JP; Lingappan K Am J Physiol Lung Cell Mol Physiol; 2019 Jan; 316(1):L144-L156. PubMed ID: 30382766 [TBL] [Abstract][Full Text] [Related]
18. Cathepsin S deficiency confers protection from neonatal hyperoxia-induced lung injury. Hirakawa H; Pierce RA; Bingol-Karakoc G; Karaaslan C; Weng M; Shi GP; Saad A; Weber E; Mariani TJ; Starcher B; Shapiro SD; Cataltepe S Am J Respir Crit Care Med; 2007 Oct; 176(8):778-85. PubMed ID: 17673697 [TBL] [Abstract][Full Text] [Related]
19. Reduced platelet-derived growth factor receptor expression is a primary feature of human bronchopulmonary dysplasia. Popova AP; Bentley JK; Cui TX; Richardson MN; Linn MJ; Lei J; Chen Q; Goldsmith AM; Pryhuber GS; Hershenson MB Am J Physiol Lung Cell Mol Physiol; 2014 Aug; 307(3):L231-9. PubMed ID: 24907056 [TBL] [Abstract][Full Text] [Related]
20. Functional and pathological effects of prolonged hyperoxia in neonatal mice. Warner BB; Stuart LA; Papes RA; Wispé JR Am J Physiol; 1998 Jul; 275(1):L110-7. PubMed ID: 9688942 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]