These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 27070578)

  • 1. Challenging Density Functional Theory Calculations with Hemes and Porphyrins.
    de Visser SP; Stillman MJ
    Int J Mol Sci; 2016 Apr; 17(4):519. PubMed ID: 27070578
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interactions of porphyrins with DNA: A review focusing recent advances in chemical modifications on porphyrins as artificial nucleases.
    Mathew D; Sujatha S
    J Inorg Biochem; 2021 Jun; 219():111434. PubMed ID: 33819802
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbene generation by cytochromes and electronic structure of heme-iron-porphyrin-carbene complex: a quantum chemical study.
    Taxak N; Patel B; Bharatam PV
    Inorg Chem; 2013 May; 52(9):5097-109. PubMed ID: 23560646
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Density functional theory calculations on ruthenium(IV) bis(amido) porphyrins: search for a broader perspective of heme protein compound II intermediates.
    Gonzalez E; Brothers PJ; Ghosh A
    J Phys Chem B; 2010 Nov; 114(46):15380-8. PubMed ID: 20979402
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spectroscopic and computational study of β-ethynylphenylene substituted zinc and free-base porphyrins.
    Earles JC; Gordon KC; Stephenson AW; Partridge AC; Officer DL
    Phys Chem Chem Phys; 2011 Jan; 13(4):1597-605. PubMed ID: 21125110
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resonance Raman studies on the ligand-iron interactions in hemoproteins and metallo-porphyrins.
    Kitagawa T; Ozaki Y; Kyogoku Y
    Adv Biophys; 1978; 11():153-96. PubMed ID: 27953
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electronic structure, spin-states, and spin-crossover reaction of heme-related Fe-porphyrins: a theoretical perspective.
    Ali ME; Sanyal B; Oppeneer PM
    J Phys Chem B; 2012 May; 116(20):5849-59. PubMed ID: 22512398
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electronic structure and biologically relevant reactivity of low-spin {FeNO}8 porphyrin model complexes: new insight from a bis-picket fence porphyrin.
    Goodrich LE; Roy S; Alp EE; Zhao J; Hu MY; Lehnert N
    Inorg Chem; 2013 Jul; 52(13):7766-80. PubMed ID: 23746143
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of electron-withdrawing group effects on heme binding in designed proteins: implications for heme a in cytochrome c oxidase.
    Zhuang J; Amoroso JH; Kinloch R; Dawson JH; Baldwin MJ; Gibney BR
    Inorg Chem; 2006 Jun; 45(12):4685-94. PubMed ID: 16749832
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of the axial ligand on substrate sulfoxidation mediated by iron(IV)-oxo porphyrin cation radical oxidants.
    Kumar D; Sastry GN; de Visser SP
    Chemistry; 2011 May; 17(22):6196-205. PubMed ID: 21469227
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conservation of the conformation of the porphyrin macrocycle in hemoproteins.
    Jentzen W; Ma JG; Shelnutt JA
    Biophys J; 1998 Feb; 74(2 Pt 1):753-63. PubMed ID: 9533688
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heme-nitrosyls: electronic structure implications for function in biology.
    Hunt AP; Lehnert N
    Acc Chem Res; 2015 Jul; 48(7):2117-25. PubMed ID: 26114618
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electronic structure of six-coordinate iron(III)-porphyrin NO adducts: the elusive iron(III)-NO(radical) state and its influence on the properties of these complexes.
    Praneeth VK; Paulat F; Berto TC; George SD; Näther C; Sulok CD; Lehnert N
    J Am Chem Soc; 2008 Nov; 130(46):15288-303. PubMed ID: 18942830
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of iron displacement out of the porphyrin plane on the resonance Raman spectra of heme proteins and iron porphyrins.
    Stavrov SS
    Biophys J; 1993 Nov; 65(5):1942-50. PubMed ID: 8298023
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heme electron transfer in peroxidases: the propionate e-pathway.
    Guallar V
    J Phys Chem B; 2008 Oct; 112(42):13460-4. PubMed ID: 18816089
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mini Heme-Proteins: Designability of Structure and Diversity of Functions.
    Rai J
    Curr Protein Pept Sci; 2017 Aug; 18(11):1132-1140. PubMed ID: 28521711
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cyclopropanations via Heme Carbenes: Basic Mechanism and Effects of Carbene Substituent, Protein Axial Ligand, and Porphyrin Substitution.
    Wei Y; Tinoco A; Steck V; Fasan R; Zhang Y
    J Am Chem Soc; 2018 Feb; 140(5):1649-1662. PubMed ID: 29268614
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mössbauer, NMR, geometric, and electronic properties in S = 3/2 iron porphyrins.
    Ling Y; Zhang Y
    J Am Chem Soc; 2009 May; 131(18):6386-8. PubMed ID: 19415933
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of porphyrin ligands on the regioselective dehydrogenation versus epoxidation of olefins by oxoiron(IV) mimics of cytochrome P450.
    Kumar D; Tahsini L; de Visser SP; Kang HY; Kim SJ; Nam W
    J Phys Chem A; 2009 Oct; 113(43):11713-22. PubMed ID: 19658379
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How Does Replacement of the Axial Histidine Ligand in Cytochrome
    Lee CWZ; Mubarak MQE; Green AP; de Visser SP
    Int J Mol Sci; 2020 Sep; 21(19):. PubMed ID: 32992593
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.