These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
443 related articles for article (PubMed ID: 27070756)
1. Electrical wire explosion process of copper/silver hybrid nano-particle ink and its sintering via flash white light to achieve high electrical conductivity. Chung WH; Hwang YT; Lee SH; Kim HS Nanotechnology; 2016 May; 27(20):205704. PubMed ID: 27070756 [TBL] [Abstract][Full Text] [Related]
2. Highly conductive copper nano/microparticles ink via flash light sintering for printed electronics. Joo SJ; Hwang HJ; Kim HS Nanotechnology; 2014 Jul; 25(26):265601. PubMed ID: 24916116 [TBL] [Abstract][Full Text] [Related]
3. In situ monitoring of a flash light sintering process using silver nano-ink for producing flexible electronics. Chung WH; Hwang HJ; Lee SH; Kim HS Nanotechnology; 2013 Jan; 24(3):035202. PubMed ID: 23263030 [TBL] [Abstract][Full Text] [Related]
4. In situ monitoring of flash-light sintering of copper nanoparticle ink for printed electronics. Hwang HJ; Chung WH; Kim HS Nanotechnology; 2012 Dec; 23(48):485205. PubMed ID: 23138346 [TBL] [Abstract][Full Text] [Related]
5. A highly reliable copper nanowire/nanoparticle ink pattern with high conductivity on flexible substrate prepared via a flash light-sintering technique. Joo SJ; Park SH; Moon CJ; Kim HS ACS Appl Mater Interfaces; 2015 Mar; 7(10):5674-84. PubMed ID: 25714508 [TBL] [Abstract][Full Text] [Related]
6. All-photonic drying and sintering process via flash white light combined with deep-UV and near-infrared irradiation for highly conductive copper nano-ink. Hwang HJ; Oh KH; Kim HS Sci Rep; 2016 Jan; 6():19696. PubMed ID: 26806215 [TBL] [Abstract][Full Text] [Related]
7. Copper Nanoparticle/Multiwalled Carbon Nanotube Composite Films with High Electrical Conductivity and Fatigue Resistance Fabricated via Flash Light Sintering. Hwang HJ; Joo SJ; Kim HS ACS Appl Mater Interfaces; 2015 Nov; 7(45):25413-23. PubMed ID: 26505908 [TBL] [Abstract][Full Text] [Related]
8. Multi-pulse flash light sintering of bimodal Cu nanoparticle-ink for highly conductive printed Cu electrodes. Yu MH; Joo SJ; Kim HS Nanotechnology; 2017 May; 28(20):205205. PubMed ID: 28402291 [TBL] [Abstract][Full Text] [Related]
9. Hybrid Copper-Silver Conductive Tracks for Enhanced Oxidation Resistance under Flash Light Sintering. Yim C; Sandwell A; Park SS ACS Appl Mater Interfaces; 2016 Aug; 8(34):22369-73. PubMed ID: 27514569 [TBL] [Abstract][Full Text] [Related]
10. Development of coated-wire silver ion selective electrodes on paper using conductive films of silver nanoparticles. Janrungroatsakul W; Lertvachirapaiboon C; Ngeontae W; Aeungmaitrepirom W; Chailapakul O; Ekgasit S; Tuntulani T Analyst; 2013 Nov; 138(22):6786-92. PubMed ID: 24071789 [TBL] [Abstract][Full Text] [Related]
11. Intensive Plasmonic Flash Light Sintering of Copper Nanoinks Using a Band-Pass Light Filter for Highly Electrically Conductive Electrodes in Printed Electronics. Hwang YT; Chung WH; Jang YR; Kim HS ACS Appl Mater Interfaces; 2016 Apr; 8(13):8591-9. PubMed ID: 26975337 [TBL] [Abstract][Full Text] [Related]
12. Effect of laser-induced temperature field on the characteristics of laser-sintered silver nanoparticle ink. Lee DG; Kim DK; Moon YJ; Moon SJ Nanotechnology; 2013 Jul; 24(26):265702. PubMed ID: 23732285 [TBL] [Abstract][Full Text] [Related]
13. Fast near infrared sintering of silver nanoparticle ink and applications for flexible hybrid circuits. Gu W; Yuan W; Zhong T; Wu X; Zhou C; Lin J; Cui Z RSC Adv; 2018 Aug; 8(53):30215-30222. PubMed ID: 35546861 [TBL] [Abstract][Full Text] [Related]
14. Photo-Sintered Silver Thin Films by a High-Power UV-LED Module for Flexible Electronic Applications. Kim M; Jee H; Lee J Nanomaterials (Basel); 2021 Oct; 11(11):. PubMed ID: 34835606 [TBL] [Abstract][Full Text] [Related]
15. Printed UHF RFID antennas with high efficiencies using nano-particle silver ink. Lee Y; Kim CH; Shin DY; Kim YG J Nanosci Nanotechnol; 2011 Jul; 11(7):6425-8. PubMed ID: 22121728 [TBL] [Abstract][Full Text] [Related]
16. Effectiveness of Oxygen during Sintering of Silver Thin Films Derived by Nanoparticle Ink. Feng F; Hong H; Gao X; Ren T; Ma Y; Feng P Nanomaterials (Basel); 2022 Jun; 12(11):. PubMed ID: 35683763 [TBL] [Abstract][Full Text] [Related]
17. Laser direct synthesis and patterning of silver nano/microstructures on a polymer substrate. Liu YK; Lee MT ACS Appl Mater Interfaces; 2014 Aug; 6(16):14576-82. PubMed ID: 25076124 [TBL] [Abstract][Full Text] [Related]
18. Cu ion ink for a flexible substrate and highly conductive patterning by intensive pulsed light sintering. Wang BY; Yoo TH; Song YW; Lim DS; Oh YJ ACS Appl Mater Interfaces; 2013 May; 5(10):4113-9. PubMed ID: 23586602 [TBL] [Abstract][Full Text] [Related]
19. Low-Thermal-Budget Photonic Processing of Highly Conductive Cu Interconnects Based on CuO Nanoinks: Potential for Flexible Printed Electronics. Rager MS; Aytug T; Veith GM; Joshi P ACS Appl Mater Interfaces; 2016 Jan; 8(3):2441-8. PubMed ID: 26720684 [TBL] [Abstract][Full Text] [Related]
20. Cu salt ink formulation for printed electronics using photonic sintering. Araki T; Sugahara T; Jiu J; Nagao S; Nogi M; Koga H; Uchida H; Shinozaki K; Suganuma K Langmuir; 2013 Sep; 29(35):11192-7. PubMed ID: 23919600 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]