These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 27071053)

  • 1. Mechanistic modeling of biocorrosion caused by biofilms of sulfate reducing bacteria and acid producing bacteria.
    Xu D; Li Y; Gu T
    Bioelectrochemistry; 2016 Aug; 110():52-8. PubMed ID: 27071053
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A semi-continuous system for monitoring microbially influenced corrosion.
    Eid MM; Duncan KE; Tanner RS
    J Microbiol Methods; 2018 Jul; 150():55-60. PubMed ID: 29803719
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electron mediators accelerate the microbiologically influenced corrosion of 304 stainless steel by the Desulfovibrio vulgaris biofilm.
    Zhang P; Xu D; Li Y; Yang K; Gu T
    Bioelectrochemistry; 2015 Feb; 101():14-21. PubMed ID: 25023048
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extracellular Electron Transfer Is a Bottleneck in the Microbiologically Influenced Corrosion of C1018 Carbon Steel by the Biofilm of Sulfate-Reducing Bacterium Desulfovibrio vulgaris.
    Li H; Xu D; Li Y; Feng H; Liu Z; Li X; Gu T; Yang K
    PLoS One; 2015; 10(8):e0136183. PubMed ID: 26308855
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mathematical modelling of microbial corrosion in carbon steel due to early-biofilm formation of sulfate-reducing bacteria via extracellular electron transfer.
    Anguita J; Pizarro G; Vargas IT
    Bioelectrochemistry; 2022 Jun; 145():108058. PubMed ID: 35074731
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electron transfer mediators accelerated the microbiologically influence corrosion against carbon steel by nitrate reducing Pseudomonas aeruginosa biofilm.
    Jia R; Yang D; Xu D; Gu T
    Bioelectrochemistry; 2017 Dec; 118():38-46. PubMed ID: 28715664
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of sulphate-reducing bacteria on the performance of engineering materials.
    Javaherdashti R
    Appl Microbiol Biotechnol; 2011 Sep; 91(6):1507-17. PubMed ID: 21786108
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extracellular Electron Transfer by
    Chugh B; Sheetal ; Singh M; Thakur S; Pani B; Singh AK; Saji VS
    ACS Biomater Sci Eng; 2022 Mar; 8(3):1049-1059. PubMed ID: 35199512
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hybrid soliwave technique for mitigating sulfate-reducing bacteria in controlling biocorrosion: a case study on crude oil sample.
    Mohd Ali MKFB; Abu Bakar A; Md Noor N; Yahaya N; Ismail M; Rashid AS
    Environ Technol; 2017 Oct; 38(19):2427-2439. PubMed ID: 27875932
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microbial community structures and in situ sulfate-reducing and sulfur-oxidizing activities in biofilms developed on mortar specimens in a corroded sewer system.
    Satoh H; Odagiri M; Ito T; Okabe S
    Water Res; 2009 Oct; 43(18):4729-39. PubMed ID: 19709714
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Uniform and Pitting Corrosion of Carbon Steel by Shewanella oneidensis MR-1 under Nitrate-Reducing Conditions.
    Miller RB; Lawson K; Sadek A; Monty CN; Senko JM
    Appl Environ Microbiol; 2018 Jun; 84(12):. PubMed ID: 29654179
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interpreting microbiologically assisted cracking with E
    Wu T; Sun C; Ke W
    Bioelectrochemistry; 2018 Apr; 120():57-65. PubMed ID: 29175692
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conductive magnetic nanowires accelerated electron transfer between C1020 carbon steel and Desulfovibrio vulgaris biofilm.
    Alrammah F; Xu L; Patel N; Kontis N; Rosado A; Gu T
    Sci Total Environ; 2024 May; 925():171763. PubMed ID: 38494030
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microbiologically influenced corrosion of X80 pipeline steel by nitrate reducing bacteria in artificial Beijing soil.
    Liu B; Li Z; Yang X; Du C; Li X
    Bioelectrochemistry; 2020 Oct; 135():107551. PubMed ID: 32470907
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glyceryl trinitrate and caprylic acid for the mitigation of the Desulfovibrio vulgaris biofilm on C1018 carbon steel.
    Li Y; Zhang P; Cai W; Rosenblatt JS; Raad II; Xu D; Gu T
    World J Microbiol Biotechnol; 2016 Feb; 32(2):23. PubMed ID: 26745983
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bulk phase resource ratio alters carbon steel corrosion rates and endogenously produced extracellular electron transfer mediators in a sulfate-reducing biofilm.
    Krantz GP; Lucas K; Wunderlich EL; Hoang LT; Avci R; Siuzdak G; Fields MW
    Biofouling; 2019 Jul; 35(6):669-683. PubMed ID: 31402749
    [No Abstract]   [Full Text] [Related]  

  • 17. Microbially Influenced Corrosion of Stainless Steel by Acidithiobacillus ferrooxidans Supplemented with Pyrite: Importance of Thiosulfate.
    Inaba Y; Xu S; Vardner JT; West AC; Banta S
    Appl Environ Microbiol; 2019 Nov; 85(21):. PubMed ID: 31444204
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Corrosion of iron by sulfate-reducing bacteria: new views of an old problem.
    Enning D; Garrelfs J
    Appl Environ Microbiol; 2014 Feb; 80(4):1226-36. PubMed ID: 24317078
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Evaluation of molybdate and nitrate on sulphate-reducing bacteria related to corrosion processes in industrial systems].
    Torrado Rincón JR; Calixto Gómez DM; Sarmiento Caraballo AE; Panqueva Alvarez JH
    Rev Argent Microbiol; 2008; 40(1):52-62. PubMed ID: 18669055
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbial Corrosion in Orthodontics.
    Gopalakrishnan U; Felicita S; Ronald B; Appavoo E; Patil S
    J Contemp Dent Pract; 2022 Jun; 23(6):569-571. PubMed ID: 36259293
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.