These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 27071084)

  • 1. Covert neurofeedback without awareness shapes cortical network spontaneous connectivity.
    Ramot M; Grossman S; Friedman D; Malach R
    Proc Natl Acad Sci U S A; 2016 Apr; 113(17):E2413-20. PubMed ID: 27071084
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Learning Control Over Emotion Networks Through Connectivity-Based Neurofeedback.
    Koush Y; Meskaldji DE; Pichon S; Rey G; Rieger SW; Linden DE; Van De Ville D; Vuilleumier P; Scharnowski F
    Cereb Cortex; 2017 Feb; 27(2):1193-1202. PubMed ID: 26679192
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic reconfiguration of human brain functional networks through neurofeedback.
    Haller S; Kopel R; Jhooti P; Haas T; Scharnowski F; Lovblad KO; Scheffler K; Van De Ville D
    Neuroimage; 2013 Nov; 81():243-252. PubMed ID: 23684872
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real-time fMRI-based neurofeedback reinforces causality of attention networks.
    Lee JH; Kim J; Yoo SS
    Neurosci Res; 2012 Apr; 72(4):347-54. PubMed ID: 22285603
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-regulation of inter-hemispheric visual cortex balance through real-time fMRI neurofeedback training.
    Robineau F; Rieger SW; Mermoud C; Pichon S; Koush Y; Van De Ville D; Vuilleumier P; Scharnowski F
    Neuroimage; 2014 Oct; 100():1-14. PubMed ID: 24904993
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct modulation of aberrant brain network connectivity through real-time NeuroFeedback.
    Ramot M; Kimmich S; Gonzalez-Castillo J; Roopchansingh V; Popal H; White E; Gotts SJ; Martin A
    Elife; 2017 Sep; 6():. PubMed ID: 28917059
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of fMRI neurofeedback of differential primary motor cortex activity using kinesthetic motor imagery.
    Chiew M; LaConte SM; Graham SJ
    Neuroimage; 2012 May; 61(1):21-31. PubMed ID: 22401758
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Power Spectral Density and Functional Connectivity Changes due to a Sensorimotor Neurofeedback Training: A Preliminary Study.
    Terrasa JL; Alba G; Cifre I; Rey B; Montoya P; Muñoz MA
    Neural Plast; 2019; 2019():7647204. PubMed ID: 31191639
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neurofeedback learning for mental practice rather than repetitive practice improves neural pattern consistency and functional network efficiency in the subsequent mental motor execution.
    Lee D; Jang C; Park HJ
    Neuroimage; 2019 Mar; 188():680-693. PubMed ID: 30599191
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The orbitofrontal cortex processes neurofeedback failure signals.
    Paret C; Zaehringer J; Ruf M; Ende G; Schmahl C
    Behav Brain Res; 2019 Sep; 369():111938. PubMed ID: 31071348
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Connectivity Neurofeedback Training Can Differentially Change Functional Connectivity and Cognitive Performance.
    Yamashita A; Hayasaka S; Kawato M; Imamizu H
    Cereb Cortex; 2017 Oct; 27(10):4960-4970. PubMed ID: 28922830
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Connectivity changes underlying neurofeedback training of visual cortex activity.
    Scharnowski F; Rosa MJ; Golestani N; Hutton C; Josephs O; Weiskopf N; Rees G
    PLoS One; 2014; 9(3):e91090. PubMed ID: 24609065
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alpha/Theta Neurofeedback Increases Mentalization and Default Mode Network Connectivity in a Non-Clinical Sample.
    Imperatori C; Della Marca G; Amoroso N; Maestoso G; Valenti EM; Massullo C; Carbone GA; Contardi A; Farina B
    Brain Topogr; 2017 Nov; 30(6):822-831. PubMed ID: 28936792
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distributed Patterns of Brain Activity Underlying Real-Time fMRI Neurofeedback Training.
    Kopel R; Emmert K; Scharnowski F; Haller S; Van De Ville D
    IEEE Trans Biomed Eng; 2017 Jun; 64(6):1228-1237. PubMed ID: 28541186
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cognitive Neurostimulation: Learning to Volitionally Sustain Ventral Tegmental Area Activation.
    MacInnes JJ; Dickerson KC; Chen NK; Adcock RA
    Neuron; 2016 Mar; 89(6):1331-1342. PubMed ID: 26948894
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recovery of the default mode network after demanding neurofeedback training occurs in spatio-temporally segregated subnetworks.
    Van De Ville D; Jhooti P; Haas T; Kopel R; Lovblad KO; Scheffler K; Haller S
    Neuroimage; 2012 Dec; 63(4):1775-81. PubMed ID: 22960086
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Network-based fMRI-neurofeedback training of sustained attention.
    Pamplona GSP; Heldner J; Langner R; Koush Y; Michels L; Ionta S; Scharnowski F; Salmon CEG
    Neuroimage; 2020 Nov; 221():117194. PubMed ID: 32711065
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Real-time fMRI brain computer interfaces: self-regulation of single brain regions to networks.
    Ruiz S; Buyukturkoglu K; Rana M; Birbaumer N; Sitaram R
    Biol Psychol; 2014 Jan; 95():4-20. PubMed ID: 23643926
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advances in fMRI Real-Time Neurofeedback.
    Watanabe T; Sasaki Y; Shibata K; Kawato M
    Trends Cogn Sci; 2017 Dec; 21(12):997-1010. PubMed ID: 29031663
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neurofeedback: A promising tool for the self-regulation of emotion networks.
    Johnston SJ; Boehm SG; Healy D; Goebel R; Linden DE
    Neuroimage; 2010 Jan; 49(1):1066-72. PubMed ID: 19646532
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.