These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 27071158)

  • 41. Effects of enhanced viscosity on canine gastric and intestinal motility.
    Xu X; Brining D; Rafiq A; Hayes J; Chen JD
    J Gastroenterol Hepatol; 2005 Mar; 20(3):387-94. PubMed ID: 15740481
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Origin, propagation and regional characteristics of porcine gastric slow wave activity determined by high-resolution mapping.
    Egbuji JU; O'Grady G; Du P; Cheng LK; Lammers WJ; Windsor JA; Pullan AJ
    Neurogastroenterol Motil; 2010 Oct; 22(10):e292-300. PubMed ID: 20618830
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Determining the efficient inter-electrode distance for high-resolution mapping using a mathematical model of human gastric dysrhythmias.
    Putney J; O'Grady G; Angeli TR; Paskaranandavadivel N; Cheng LK; Erickson JC; Peng Du
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1448-51. PubMed ID: 26736542
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Visualization of origins and propagation of excitation in canine gastric smooth muscle.
    Stevens RJ; Weinert JS; Publicover NG
    Am J Physiol; 1999 Sep; 277(3):C448-60. PubMed ID: 10484332
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Where do we stand on gastric motility?
    Malagelada JR
    Scand J Gastroenterol Suppl; 1990; 175():42-51. PubMed ID: 2237281
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Origin and propagation of the slow wave in the canine stomach: the outlines of a gastric conduction system.
    Lammers WJ; Ver Donck L; Stephen B; Smets D; Schuurkes JA
    Am J Physiol Gastrointest Liver Physiol; 2009 Jun; 296(6):G1200-10. PubMed ID: 19359425
    [TBL] [Abstract][Full Text] [Related]  

  • 47. An electrical analysis of slow wave propagation in the guinea-pig gastric antrum.
    Edwards FR; Hirst GD
    J Physiol; 2006 Feb; 571(Pt 1):179-89. PubMed ID: 16357016
    [TBL] [Abstract][Full Text] [Related]  

  • 48. High resolution electrical mapping in the gastrointestinal system: initial results.
    Lammers WJ; Stephen B; Arafat K; Manefield GW
    Neurogastroenterol Motil; 1996 Sep; 8(3):207-16. PubMed ID: 8878080
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [Study on the removal method of electrogastrogram baseline wander based on wavelet transformation].
    Ding W; Qin S; Miao L; Xi N; Li H
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2012 Dec; 29(6):1189-92, 1196. PubMed ID: 23469554
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mapping small intestine bioelectrical activity using high-resolution printed-circuit-board electrodes.
    Angeli TR; O'Grady G; Erickson JC; Du P; Paskaranandavadivel N; Bissett IP; Cheng LK; Pullan AJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():4951-4. PubMed ID: 22255449
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Wave mapping: detection of co-existing multiple wavefronts in high-resolution electrical mapping.
    Lammers WJ; el-Kays A; Arafat K; el-Sharkawy TY
    Med Biol Eng Comput; 1995 May; 33(3 Spec No):476-81. PubMed ID: 7666697
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Impact of abnormal myoelectricity at gastroduodenal anastomosis on gastric emptying in rats].
    You CZ; Dong R; Sun JJ; Du MH; Qu HC; Xiao JQ; Tang WH
    Zhonghua Wei Chang Wai Ke Za Zhi; 2010 Nov; 13(11):842-5. PubMed ID: 21108063
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Multi-day, multi-sensor ambulatory monitoring of gastric electrical activity.
    Paskaranandavadivel N; Angeli TR; Manson T; Stocker A; McElmurray L; O'Grady G; Abell T; Cheng LK
    Physiol Meas; 2019 Mar; 40(2):025011. PubMed ID: 30754026
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Gastric distension alters frequency and regularity but not amplitude of the gastric slow wave.
    Zhu H; Chen JD
    Neurogastroenterol Motil; 2004 Dec; 16(6):745-52. PubMed ID: 15601424
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A novel retractable laparoscopic device for mapping gastrointestinal slow wave propagation patterns.
    Berry R; Paskaranandavadivel N; Du P; Trew ML; O'Grady G; Windsor JA; Cheng LK
    Surg Endosc; 2017 Jan; 31(1):477-486. PubMed ID: 27129554
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A novel laparoscopic device for measuring gastrointestinal slow-wave activity.
    O'Grady G; Du P; Egbuji JU; Lammers WJ; Wahab A; Pullan AJ; Cheng LK; Windsor JA
    Surg Endosc; 2009 Dec; 23(12):2842-8. PubMed ID: 19466491
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effects of the propagation velocity of a surface depolarization wave on the extracellular potential of an excitable cell.
    Bardakjian BL; Vigmond EJ
    IEEE Trans Biomed Eng; 1994 May; 41(5):432-9. PubMed ID: 8070802
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Correlation between gastric myoelectrical activity recorded by multi-channel electrogastrography and gastric emptying in patients with functional dyspepsia.
    Zhang H; Xu X; Wang Z; Li C; Ke M
    Scand J Gastroenterol; 2006 Jul; 41(7):797-804. PubMed ID: 16785192
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Use of transcutaneous electrogastrography in the diagnostics of digestive tract diseases].
    Czerwionka-Szaflarska M; Parzecka M
    Pol Merkur Lekarski; 2006 Dec; 21(126):585-9. PubMed ID: 17405303
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Arrhythmias in the gut.
    Lammers WJ
    Neurogastroenterol Motil; 2013 May; 25(5):353-7. PubMed ID: 23490042
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.