These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 27071158)

  • 61. Arrhythmias in the gut.
    Lammers WJ
    Neurogastroenterol Motil; 2013 May; 25(5):353-7. PubMed ID: 23490042
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Empirical Mode Decomposition for slow wave extraction from electrogastrographical signals.
    Mika B; Komorowski D; Tkacz E
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():4138-41. PubMed ID: 26737205
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Mapping slow waves and spikes in chronically instrumented conscious dogs: implantation techniques and recordings.
    Ver Donck L; Lammers WJ; Moreaux B; Smets D; Voeten J; Vekemans J; Schuurkes JA; Coulie B
    Med Biol Eng Comput; 2006 Mar; 44(3):170-8. PubMed ID: 16937158
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Quantification of Gastric Slow Wave Velocity Using Bipolar High-Resolution Recordings.
    Han H; Cheng LK; Avci R; Paskaranandavadivel N
    IEEE Trans Biomed Eng; 2022 Mar; 69(3):1063-1071. PubMed ID: 34529558
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Identification of the slow wave component of the electroenterogram from Laplacian abdominal surface recordings in humans.
    Prats-Boluda G; Garcia-Casado J; Martinez-de-Juan JL; Ponce JL
    Physiol Meas; 2007 Sep; 28(9):1115-33. PubMed ID: 17827658
    [TBL] [Abstract][Full Text] [Related]  

  • 66. The gastrointestinal electrical mapping suite (GEMS): software for analyzing and visualizing high-resolution (multi-electrode) recordings in spatiotemporal detail.
    Yassi R; O'Grady G; Paskaranandavadivel N; Du P; Angeli TR; Pullan AJ; Cheng LK; Erickson JC
    BMC Gastroenterol; 2012 Jun; 12():60. PubMed ID: 22672254
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Blind separation of multichannel electrogastrograms using independent component analysis based on a neural network.
    Wang ZS; Cheung JY; Chen JD
    Med Biol Eng Comput; 1999 Jan; 37(1):80-6. PubMed ID: 10396846
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Comparison and analysis of inter-subject variability of simulated magnetic activity generated from gastric electrical activity.
    Komuro R; Cheng LK; Pullan AJ
    Ann Biomed Eng; 2008 Jun; 36(6):1049-59. PubMed ID: 18330701
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Multiscale modelling of human gastric electric activity: can the electrogastrogram detect functional electrical uncoupling?
    Buist ML; Cheng LK; Sanders KM; Pullan AJ
    Exp Physiol; 2006 Mar; 91(2):383-90. PubMed ID: 16407476
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Gastric dysmotility in patients with major depression.
    Ruhland C; Koschke M; Greiner W; Peupelmann J; Pietsch U; Hocke M; Yeragani VK; Bär KJ
    J Affect Disord; 2008 Sep; 110(1-2):185-90. PubMed ID: 18289697
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Effects of gastrointestinal tissue structure on computed dipole vectors.
    Austin TM; Li L; Pullan AJ; Cheng LK
    Biomed Eng Online; 2007 Oct; 6():39. PubMed ID: 17953773
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Chaotic behavior of gastric migrating myoelectrical complex.
    Wang ZS; He Z; Chen JD
    IEEE Trans Biomed Eng; 2004 Aug; 51(8):1401-6. PubMed ID: 15311825
    [TBL] [Abstract][Full Text] [Related]  

  • 73. The impact of surgical excisions on human gastric slow wave conduction, defined by high-resolution electrical mapping and in silico modeling.
    Du P; Hameed A; Angeli TR; Lahr C; Abell TL; Cheng LK; O'Grady G
    Neurogastroenterol Motil; 2015 Oct; 27(10):1409-22. PubMed ID: 26251163
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Circumferential and functional re-entry of in vivo slow-wave activity in the porcine small intestine.
    Angeli TR; O'Grady G; Du P; Paskaranandavadivel N; Pullan AJ; Bissett IP; Cheng LK
    Neurogastroenterol Motil; 2013 May; 25(5):e304-14. PubMed ID: 23489929
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Effects of music on gastric myoelectrical activity in healthy humans.
    Lin HH; Chang WK; Chu HC; Huang TY; Chao YC; Hsieh TY
    Int J Clin Pract; 2007 Jul; 61(7):1126-30. PubMed ID: 17343672
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Spatial and temporal coupling between slow waves and pendular contractions.
    Lammers WJ
    Am J Physiol Gastrointest Liver Physiol; 2005 Nov; 289(5):G898-903. PubMed ID: 16020658
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Characterization of Electrophysiological Propagation by Multichannel Sensors.
    Bradshaw LA; Kim JH; Somarajan S; Richards WO; Cheng LK
    IEEE Trans Biomed Eng; 2016 Aug; 63(8):1751-9. PubMed ID: 26595907
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Generation and propagation of gastric slow waves.
    van Helden DF; Laver DR; Holdsworth J; Imtiaz MS
    Clin Exp Pharmacol Physiol; 2010 Apr; 37(4):516-24. PubMed ID: 19930430
    [TBL] [Abstract][Full Text] [Related]  

  • 79. A novel approach for estimating muscle fiber conduction velocity by spatial and temporal filtering of surface EMG signals.
    Farina D; Merletti R
    IEEE Trans Biomed Eng; 2003 Dec; 50(12):1340-51. PubMed ID: 14656063
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Feasibility of High-Resolution Electrical Mapping for Characterizing Conduction Blocks Created by Gastric Ablation.
    Aghababaie Z; Chan CA; Paskaranandavadivel N; Beyder A; Farrugia G; Asirvatham S; O'Grady G; Cheng LK; Angeli TR
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():170-173. PubMed ID: 31945871
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.