BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

396 related articles for article (PubMed ID: 27071194)

  • 1. Upper-Limb Robotic Exoskeletons for Neurorehabilitation: A Review on Control Strategies.
    Proietti T; Crocher V; Roby-Brami A; Jarrasse N
    IEEE Rev Biomed Eng; 2016; 9():4-14. PubMed ID: 27071194
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exoskeleton and End-Effector Robots for Upper and Lower Limbs Rehabilitation: Narrative Review.
    Molteni F; Gasperini G; Cannaviello G; Guanziroli E
    PM R; 2018 Sep; 10(9 Suppl 2):S174-S188. PubMed ID: 30269804
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modifying upper-limb inter-joint coordination in healthy subjects by training with a robotic exoskeleton.
    Proietti T; Guigon E; Roby-Brami A; Jarrassé N
    J Neuroeng Rehabil; 2017 Jun; 14(1):55. PubMed ID: 28606179
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Haptic Neurorehabilitation and Virtual Reality for Upper Limb Paralysis: A Review.
    Piggott L; Wagner S; Ziat M
    Crit Rev Biomed Eng; 2016; 44(1-2):1-32. PubMed ID: 27652449
    [TBL] [Abstract][Full Text] [Related]  

  • 5. State of the Art and Future Directions for Lower Limb Robotic Exoskeletons.
    Young AJ; Ferris DP
    IEEE Trans Neural Syst Rehabil Eng; 2017 Feb; 25(2):171-182. PubMed ID: 26829794
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rehabilitation robots for the treatment of sensorimotor deficits: a neurophysiological perspective.
    Gassert R; Dietz V
    J Neuroeng Rehabil; 2018 Jun; 15(1):46. PubMed ID: 29866106
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exoskeleton robots for lower limb assistance: A review of materials, actuation, and manufacturing methods.
    Hussain F; Goecke R; Mohammadian M
    Proc Inst Mech Eng H; 2021 Dec; 235(12):1375-1385. PubMed ID: 34254562
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Robotics for Lower Limb Rehabilitation.
    Esquenazi A; Talaty M
    Phys Med Rehabil Clin N Am; 2019 May; 30(2):385-397. PubMed ID: 30954154
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Review of Robotics in Neurorehabilitation: Towards an Automated Process for Upper Limb.
    Oña ED; Cano-de la Cuerda R; Sánchez-Herrera P; Balaguer C; Jardón A
    J Healthc Eng; 2018; 2018():9758939. PubMed ID: 29707189
    [TBL] [Abstract][Full Text] [Related]  

  • 10. State of the art and challenges for the classification of studies on electromechanical and robotic devices in neurorehabilitation: a scoping review.
    Gandolfi M; Valè N; Posteraro F; Morone G; Dell'orco A; Botticelli A; Dimitrova E; Gervasoni E; Goffredo M; Zenzeri J; Antonini A; Daniele C; Benanti P; Boldrini P; Bonaiuti D; Castelli E; Draicchio F; Falabella V; Galeri S; Gimigliano F; Grigioni M; Mazzon S; Molteni F; Petrarca M; Picelli A; Senatore M; Turchetti G; Giansanti D; Mazzoleni S;
    Eur J Phys Rehabil Med; 2021 Oct; 57(5):831-840. PubMed ID: 34042413
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Voluntary control of wearable robotic exoskeletons by patients with paresis via neuromechanical modeling.
    Durandau G; Farina D; Asín-Prieto G; Dimbwadyo-Terrer I; Lerma-Lara S; Pons JL; Moreno JC; Sartori M
    J Neuroeng Rehabil; 2019 Jul; 16(1):91. PubMed ID: 31315633
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A review of technological and clinical aspects of robot-aided rehabilitation of upper-extremity after stroke.
    Babaiasl M; Mahdioun SH; Jaryani P; Yazdani M
    Disabil Rehabil Assist Technol; 2016; 11(4):263-80. PubMed ID: 25600057
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control strategies used in lower limb exoskeletons for gait rehabilitation after brain injury: a systematic review and analysis of clinical effectiveness.
    de Miguel-Fernández J; Lobo-Prat J; Prinsen E; Font-Llagunes JM; Marchal-Crespo L
    J Neuroeng Rehabil; 2023 Feb; 20(1):23. PubMed ID: 36805777
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experience of Robotic Exoskeleton Use at Four Spinal Cord Injury Model Systems Centers.
    Heinemann AW; Jayaraman A; Mummidisetty CK; Spraggins J; Pinto D; Charlifue S; Tefertiller C; Taylor HB; Chang SH; Stampas A; Furbish CL; Field-Fote EC
    J Neurol Phys Ther; 2018 Oct; 42(4):256-267. PubMed ID: 30199518
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Upper limb robotics applied to neurorehabilitation: An overview of clinical practice.
    Duret C; Mazzoleni S
    NeuroRehabilitation; 2017; 41(1):5-15. PubMed ID: 28505985
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New generation emerging technologies for neurorehabilitation and motor assistance.
    Frisoli A; Solazzi M; Loconsole C; Barsotti M
    Acta Myol; 2016 Dec; 35(3):141-144. PubMed ID: 28484314
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bilateral robots for upper-limb stroke rehabilitation: State of the art and future prospects.
    Sheng B; Zhang Y; Meng W; Deng C; Xie S
    Med Eng Phys; 2016 Jul; 38(7):587-606. PubMed ID: 27117423
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Review on Patient-Cooperative Control Strategies for Upper-Limb Rehabilitation Exoskeletons.
    Dalla Gasperina S; Roveda L; Pedrocchi A; Braghin F; Gandolla M
    Front Robot AI; 2021; 8():745018. PubMed ID: 34950707
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Contributions of robotic devices to upper limb poststroke rehabilitation].
    Duret C
    Rev Neurol (Paris); 2010 May; 166(5):486-93. PubMed ID: 19942243
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Robotic-assisted rehabilitation of the upper limb after acute stroke.
    Masiero S; Celia A; Rosati G; Armani M
    Arch Phys Med Rehabil; 2007 Feb; 88(2):142-9. PubMed ID: 17270510
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.