These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

358 related articles for article (PubMed ID: 27071194)

  • 41. Clinician Perceptions of Robotic Exoskeletons for Locomotor Training After Spinal Cord Injury: A Qualitative Approach.
    Ehrlich-Jones L; Crown DS; Kinnett-Hopkins D; Field-Fote E; Furbish C; Mummidisetty CK; Bond RA; Forrest G; Jayaraman A; Heinemann AW
    Arch Phys Med Rehabil; 2021 Feb; 102(2):203-215. PubMed ID: 33171130
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Do powered over-ground lower limb robotic exoskeletons affect outcomes in the rehabilitation of people with acquired brain injury?
    Postol N; Marquez J; Spartalis S; Bivard A; Spratt NJ
    Disabil Rehabil Assist Technol; 2019 Nov; 14(8):764-775. PubMed ID: 30241453
    [No Abstract]   [Full Text] [Related]  

  • 43. Robust Control of a Cable-Driven Soft Exoskeleton Joint for Intrinsic Human-Robot Interaction.
    Jarrett C; McDaid AJ
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jul; 25(7):976-986. PubMed ID: 28278475
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Robotic assessment of upper limb motor function after stroke.
    Balasubramanian S; Colombo R; Sterpi I; Sanguineti V; Burdet E
    Am J Phys Med Rehabil; 2012 Nov; 91(11 Suppl 3):S255-69. PubMed ID: 23080041
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Multi-Axis Force Sensor for Human-Robot Interaction Sensing in a Rehabilitation Robotic Device.
    Grosu V; Grosu S; Vanderborght B; Lefeber D; Rodriguez-Guerrero C
    Sensors (Basel); 2017 Jun; 17(6):. PubMed ID: 28587252
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [Research on Control System of an Exoskeleton Upper-limb Rehabilitation Robot].
    Wang L; Hu X; Hu J; Fang Y; He R; Yu H
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2016 Dec; 33(6):1168-75. PubMed ID: 29715415
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Robot-assisted assessment of muscle strength.
    Toigo M; Flück M; Riener R; Klamroth-Marganska V
    J Neuroeng Rehabil; 2017 Oct; 14(1):103. PubMed ID: 29020968
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Three upper limb robotic devices for stroke rehabilitation: a review and clinical perspective.
    Bishop L; Stein J
    NeuroRehabilitation; 2013; 33(1):3-11. PubMed ID: 23949043
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Ethical considerations in providing an upper limb exoskeleton device for stroke patients.
    Bulboacă AE; Bolboacă SD; Bulboacă AC
    Med Hypotheses; 2017 Apr; 101():61-64. PubMed ID: 28351495
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Development, Dynamic Modeling, and Multi-Modal Control of a Therapeutic Exoskeleton for Upper Limb Rehabilitation Training.
    Wu Q; Wu H
    Sensors (Basel); 2018 Oct; 18(11):. PubMed ID: 30356005
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Using robots to advance clinical translation in neurorehabilitation.
    Chiappalone M; Semprini M
    Sci Robot; 2022 Mar; 7(64):eabo1966. PubMed ID: 35353599
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Design, Development, and Testing of an Intelligent Wearable Robotic Exoskeleton Prototype for Upper Limb Rehabilitation.
    Vélez-Guerrero MA; Callejas-Cuervo M; Mazzoleni S
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450853
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Design and characterization of the OpenWrist: A robotic wrist exoskeleton for coordinated hand-wrist rehabilitation.
    Pezent E; Rose CG; Deshpande AD; O'Malley MK
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():720-725. PubMed ID: 28813905
    [TBL] [Abstract][Full Text] [Related]  

  • 54. User satisfaction with lower limb wearable robotic exoskeletons.
    Poritz JMP; Taylor HB; Francisco G; Chang SH
    Disabil Rehabil Assist Technol; 2020 Apr; 15(3):322-327. PubMed ID: 30786789
    [No Abstract]   [Full Text] [Related]  

  • 55. Design and Interaction Control of a New Bilateral Upper-Limb Rehabilitation Device.
    Miao Q; Zhang M; Wang Y; Xie SQ
    J Healthc Eng; 2017; 2017():7640325. PubMed ID: 29104747
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Robotic exoskeletons for reengaging in everyday activities: promises, pitfalls, and opportunities.
    Fritz H; Patzer D; Galen SS
    Disabil Rehabil; 2019 Mar; 41(5):560-563. PubMed ID: 29110547
    [TBL] [Abstract][Full Text] [Related]  

  • 57. On the stiffness analysis of a cable driven leg exoskeleton.
    Sanjeevi NSS; Vashista V
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():455-460. PubMed ID: 28813862
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Exploiting upper-limb functional principal components for human-like motion generation of anthropomorphic robots.
    Averta G; Della Santina C; Valenza G; Bicchi A; Bianchi M
    J Neuroeng Rehabil; 2020 May; 17(1):63. PubMed ID: 32404174
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Academic Review and Perspectives on Robotic Exoskeletons.
    Bao G; Pan L; Fang H; Wu X; Yu H; Cai S; Yu B; Wan Y
    IEEE Trans Neural Syst Rehabil Eng; 2019 Nov; 27(11):2294-2304. PubMed ID: 31567097
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Robot-Aided Neurorehabilitation: A Pediatric Robot for Ankle Rehabilitation.
    Michmizos KP; Rossi S; Castelli E; Cappa P; Krebs HI
    IEEE Trans Neural Syst Rehabil Eng; 2015 Nov; 23(6):1056-67. PubMed ID: 25769168
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.