These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

372 related articles for article (PubMed ID: 27071307)

  • 41. Small Molecules Co-targeting CKIα and the Transcriptional Kinases CDK7/9 Control AML in Preclinical Models.
    Minzel W; Venkatachalam A; Fink A; Hung E; Brachya G; Burstain I; Shaham M; Rivlin A; Omer I; Zinger A; Elias S; Winter E; Erdman PE; Sullivan RW; Fung L; Mercurio F; Li D; Vacca J; Kaushansky N; Shlush L; Oren M; Levine R; Pikarsky E; Snir-Alkalay I; Ben-Neriah Y
    Cell; 2018 Sep; 175(1):171-185.e25. PubMed ID: 30146162
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A loss-of-function genetic screening reveals synergistic targeting of AKT/mTOR and WTN/β-catenin pathways for treatment of AML with high PRL-3 phosphatase.
    Zhou J; Toh SH; Chan ZL; Quah JY; Chooi JY; Tan TZ; Chong PSY; Zeng Q; Chng WJ
    J Hematol Oncol; 2018 Mar; 11(1):36. PubMed ID: 29514683
    [TBL] [Abstract][Full Text] [Related]  

  • 43. P2X7 promotes the progression of MLL-AF9 induced acute myeloid leukemia by upregulation of Pbx3.
    Feng W; Yang X; Wang L; Wang R; Yang F; Wang H; Liu X; Ren Q; Zhang Y; Zhu X; Zheng G
    Haematologica; 2021 May; 106(5):1278-1289. PubMed ID: 32165482
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Mammalian target of rapamycin complex 1 signalling is essential for germinal centre reaction.
    Li B; Li Z; Wang P; Huang Q; Xu L; He R; Ye L; Bai Q
    Immunology; 2017 Oct; 152(2):276-286. PubMed ID: 28557002
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The leukemogenic fusion gene MLL-AF9 alters microRNA expression pattern and inhibits monoblastic differentiation via miR-511 repression.
    Fleischmann KK; Pagel P; von Frowein J; Magg T; Roscher AA; Schmid I
    J Exp Clin Cancer Res; 2016 Jan; 35():9. PubMed ID: 26762252
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Small G-Protein Rheb Gates Mammalian Target of Rapamycin Signaling to Regulate Morphine Tolerance in Mice.
    Wang W; Ma X; Du W; Lin R; Li Z; Jiang W; Wang LY; Worley PF; Xu T
    Anesthesiology; 2024 Apr; 140(4):786-802. PubMed ID: 38147625
    [TBL] [Abstract][Full Text] [Related]  

  • 47. High PD‑L1 expression drives glycolysis via an Akt/mTOR/HIF‑1α axis in acute myeloid leukemia.
    Ma P; Xing M; Han L; Gan S; Ma J; Wu F; Huang Y; Chen Y; Tian W; An C; Sun H; Sun L
    Oncol Rep; 2020 Mar; 43(3):999-1009. PubMed ID: 32020232
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Ras oncogene-independent activation of RALB signaling is a targetable mechanism of escape from NRAS(V12) oncogene addiction in acute myeloid leukemia.
    Pomeroy EJ; Lee LA; Lee RDW; Schirm DK; Temiz NA; Ma J; Gruber TA; Diaz-Flores E; Moriarity BS; Downing JR; Shannon KM; Largaespada DA; Eckfeldt CE
    Oncogene; 2017 Jun; 36(23):3263-3273. PubMed ID: 27991934
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [Role of Rheb in Human Acute Myeloid Leukemia].
    Wang XM; Xu QZ; Gao YN; Gao J; Li MH; Yang WZ; Wang JX; Yuan WP
    Zhongguo Shi Yan Xue Ye Xue Za Zhi; 2016 Jun; 24(3):662-6. PubMed ID: 27342487
    [TBL] [Abstract][Full Text] [Related]  

  • 50. RALB provides critical survival signals downstream of Ras in acute myeloid leukemia.
    Eckfeldt CE; Pomeroy EJ; Lee RD; Hazen KS; Lee LA; Moriarity BS; Largaespada DA
    Oncotarget; 2016 Oct; 7(40):65147-65156. PubMed ID: 27556501
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Loss of RNA-binding protein CELF2 promotes acute leukemia development via FAT10-mTORC1.
    Guo T; Wang Y; Sun X; Hou S; Lan Y; Yuan S; Yang S; Zhao F; Chu Y; Ma Y; Cheng T; Yu J; Liu B; Yuan W; Wang X
    Oncogene; 2024 May; 43(19):1476-1487. PubMed ID: 38514854
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Inpp5e suppresses polycystic kidney disease via inhibition of PI3K/Akt-dependent mTORC1 signaling.
    Hakim S; Dyson JM; Feeney SJ; Davies EM; Sriratana A; Koenig MN; Plotnikova OV; Smyth IM; Ricardo SD; Hobbs RM; Mitchell CA
    Hum Mol Genet; 2016 Jun; 25(11):2295-2313. PubMed ID: 27056978
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Structural maintenance of chromosomes 4 is required for leukemia stem cell maintenance in MLL-AF9 induced acute myeloid leukemia.
    Peng L; Tang Y; Zhang Y; Guo S; Peng L; Ye L; Wang Y; Jiang Y
    Leuk Lymphoma; 2018 Oct; 59(10):2423-2430. PubMed ID: 29043883
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A diverse array of cancer-associated MTOR mutations are hyperactivating and can predict rapamycin sensitivity.
    Grabiner BC; Nardi V; Birsoy K; Possemato R; Shen K; Sinha S; Jordan A; Beck AH; Sabatini DM
    Cancer Discov; 2014 May; 4(5):554-63. PubMed ID: 24631838
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Loss of Dnmt3b accelerates MLL-AF9 leukemia progression.
    Zheng Y; Zhang H; Wang Y; Li X; Lu P; Dong F; Pang Y; Ma S; Cheng H; Hao S; Tang F; Yuan W; Zhang X; Cheng T
    Leukemia; 2016 Dec; 30(12):2373-2384. PubMed ID: 27133822
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Disparate effects of Shb gene deficiency on disease characteristics in murine models of myeloid, B-cell, and T-cell leukemia.
    Jamalpour M; Li X; Gustafsson K; Tyner JW; Welsh M
    Tumour Biol; 2018 Apr; 40(4):1010428318771472. PubMed ID: 29792386
    [TBL] [Abstract][Full Text] [Related]  

  • 57. WT1 facilitates the self-renewal of leukemia-initiating cells through the upregulation of BCL2L2: WT1-BCL2L2 axis as a new acute myeloid leukemia therapy target.
    Zhou B; Jin X; Jin W; Huang X; Wu Y; Li H; Zhu W; Qin X; Ye H; Gao S
    J Transl Med; 2020 Jun; 18(1):254. PubMed ID: 32580769
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Interleukin-1β inhibits normal hematopoietic expansion and promotes acute myeloid leukemia progression via the bone marrow niche.
    Wang Y; Sun X; Yuan S; Hou S; Guo T; Chu Y; Pang T; Luo HR; Yuan W; Wang X
    Cytotherapy; 2020 Mar; 22(3):127-134. PubMed ID: 32024607
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Differential role of Id1 in MLL-AF9-driven leukemia based on cell of origin.
    Man N; Sun XJ; Tan Y; García-Cao M; Liu F; Cheng G; Hatlen M; Xu H; Shah R; Chastain N; Liu N; Huang G; Zhou Y; Sheng M; Song J; Yang FC; Benezra R; Nimer SD; Wang L
    Blood; 2016 May; 127(19):2322-6. PubMed ID: 26944543
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Rictor has a pivotal role in maintaining quiescence as well as stemness of leukemia stem cells in MLL-driven leukemia.
    Fang Y; Yang Y; Hua C; Xu S; Zhou M; Guo H; Wang N; Zhao X; Huang L; Yu F; Cheng H; Wang ML; Meng L; Cheng T; Yuan W; Ma D; Zhou J
    Leukemia; 2017 Feb; 31(2):414-422. PubMed ID: 27499138
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.