These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
259 related articles for article (PubMed ID: 27071403)
1. Intron retention and rhythmic diel pattern regulation of carotenoid cleavage dioxygenase 2 during crocetin biosynthesis in saffron. Ahrazem O; Rubio-Moraga A; Argandoña-Picazo J; Castillo R; Gómez-Gómez L Plant Mol Biol; 2016 Jun; 91(3):355-74. PubMed ID: 27071403 [TBL] [Abstract][Full Text] [Related]
2. The carotenoid cleavage dioxygenase CCD2 catalysing the synthesis of crocetin in spring crocuses and saffron is a plastidial enzyme. Ahrazem O; Rubio-Moraga A; Berman J; Capell T; Christou P; Zhu C; Gómez-Gómez L New Phytol; 2016 Jan; 209(2):650-63. PubMed ID: 26377696 [TBL] [Abstract][Full Text] [Related]
3. Novel carotenoid cleavage dioxygenase catalyzes the first dedicated step in saffron crocin biosynthesis. Frusciante S; Diretto G; Bruno M; Ferrante P; Pietrella M; Prado-Cabrero A; Rubio-Moraga A; Beyer P; Gomez-Gomez L; Al-Babili S; Giuliano G Proc Natl Acad Sci U S A; 2014 Aug; 111(33):12246-51. PubMed ID: 25097262 [TBL] [Abstract][Full Text] [Related]
4. Evolutionarily distinct carotenoid cleavage dioxygenases are responsible for crocetin production in Buddleja davidii. Ahrazem O; Diretto G; Argandoña J; Rubio-Moraga Á; Julve JM; Orzáez D; Granell A; Gómez-Gómez L J Exp Bot; 2017 Jul; 68(16):4663-4677. PubMed ID: 28981773 [TBL] [Abstract][Full Text] [Related]
5. New target carotenoids for CCD4 enzymes are revealed with the characterization of a novel stress-induced carotenoid cleavage dioxygenase gene from Crocus sativus. Rubio-Moraga A; Rambla JL; Fernández-de-Carmen A; Trapero-Mozos A; Ahrazem O; Orzáez D; Granell A; Gómez-Gómez L Plant Mol Biol; 2014 Nov; 86(4-5):555-69. PubMed ID: 25204497 [TBL] [Abstract][Full Text] [Related]
6. Candidate Enzymes for Saffron Crocin Biosynthesis Are Localized in Multiple Cellular Compartments. Demurtas OC; Frusciante S; Ferrante P; Diretto G; Azad NH; Pietrella M; Aprea G; Taddei AR; Romano E; Mi J; Al-Babili S; Frigerio L; Giuliano G Plant Physiol; 2018 Jul; 177(3):990-1006. PubMed ID: 29844227 [TBL] [Abstract][Full Text] [Related]
7. Liang N; Yao MD; Wang Y; Liu J; Feng L; Wang ZM; Li XY; Xiao WH; Yuan YJ J Agric Food Chem; 2021 Oct; 69(39):11626-11636. PubMed ID: 34554747 [TBL] [Abstract][Full Text] [Related]
8. Implications of carotenoid biosynthetic genes in apocarotenoid formation during the stigma development of Crocus sativus and its closer relatives. Castillo R; Fernández JA; Gómez-Gómez L Plant Physiol; 2005 Oct; 139(2):674-89. PubMed ID: 16183835 [TBL] [Abstract][Full Text] [Related]
9. Differential interaction of Or proteins with the PSY enzymes in saffron. Ahrazem O; López AJ; Argandoña J; Castillo R; Rubio-Moraga Á; Gómez-Gómez L Sci Rep; 2020 Jan; 10(1):552. PubMed ID: 31953512 [TBL] [Abstract][Full Text] [Related]
10. Oxidative remodeling of chromoplast carotenoids: identification of the carotenoid dioxygenase CsCCD and CsZCD genes involved in Crocus secondary metabolite biogenesis. Bouvier F; Suire C; Mutterer J; Camara B Plant Cell; 2003 Jan; 15(1):47-62. PubMed ID: 12509521 [TBL] [Abstract][Full Text] [Related]
11. Identification, cloning and characterization of an ultrapetala transcription factor CsULT1 from Crocus: a novel regulator of apocarotenoid biosynthesis. Ashraf N; Jain D; Vishwakarma RA BMC Plant Biol; 2015 Feb; 15():25. PubMed ID: 25640597 [TBL] [Abstract][Full Text] [Related]
12. Genomic analysis and gene structure of the plant carotenoid dioxygenase 4 family: a deeper study in Crocus sativus and its allies. Ahrazem O; Trapero A; Gómez MD; Rubio-Moraga A; Gómez-Gómez L Genomics; 2010 Oct; 96(4):239-50. PubMed ID: 20633636 [TBL] [Abstract][Full Text] [Related]
13. Multi-species transcriptome analyses for the regulation of crocins biosynthesis in Crocus. Ahrazem O; Argandoña J; Fiore A; Rujas A; Rubio-Moraga Á; Castillo R; Gómez-Gómez L BMC Genomics; 2019 Apr; 20(1):320. PubMed ID: 31029081 [TBL] [Abstract][Full Text] [Related]
14. Glucosylation of the saffron apocarotenoid crocetin by a glucosyltransferase isolated from Crocus sativus stigmas. Moraga AR; Nohales PF; Pérez JA; Gómez-Gómez L Planta; 2004 Oct; 219(6):955-66. PubMed ID: 15605174 [TBL] [Abstract][Full Text] [Related]
15. Construction of Escherichia coli cell factories for crocin biosynthesis. Wang W; He P; Zhao D; Ye L; Dai L; Zhang X; Sun Y; Zheng J; Bi C Microb Cell Fact; 2019 Jul; 18(1):120. PubMed ID: 31277660 [TBL] [Abstract][Full Text] [Related]
16. Expression and Interaction Analysis among Saffron ALDHs and Crocetin Dialdehyde. Gómez-Gómez L; Pacios LF; Diaz-Perales A; Garrido-Arandia M; Argandoña J; Rubio-Moraga Á; Ahrazem O Int J Mol Sci; 2018 May; 19(5):. PubMed ID: 29747375 [TBL] [Abstract][Full Text] [Related]
17. The Functional Characteristics and Soluble Expression of Saffron Wang Y; Li S; Zhou Z; Sun L; Sun J; Shen C; Gao R; Song J; Pu X Int J Mol Sci; 2023 Oct; 24(20):. PubMed ID: 37894770 [TBL] [Abstract][Full Text] [Related]
18. Developmental and stress regulation of gene expression for a 9-cis-epoxycarotenoid dioxygenase, CstNCED, isolated from Crocus sativus stigmas. Ahrazem O; Rubio-Moraga A; Trapero A; Gómez-Gómez L J Exp Bot; 2012 Jan; 63(2):681-94. PubMed ID: 22048040 [TBL] [Abstract][Full Text] [Related]
20. Unraveling Massive Crocins Transport and Accumulation through Proteome and Microscopy Tools during the Development of Saffron Stigma. Gómez-Gómez L; Parra-Vega V; Rivas-Sendra A; Seguí-Simarro JM; Molina RV; Pallotti C; Rubio-Moraga Á; Diretto G; Prieto A; Ahrazem O Int J Mol Sci; 2017 Jan; 18(1):. PubMed ID: 28045431 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]