These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
105 related articles for article (PubMed ID: 27071412)
1. Quantification of cell-free layer thickness and cell distribution of blood by optical coherence tomography. Lauri J; Bykov A; Fabritius T J Biomed Opt; 2016 Apr; 21(4):40501. PubMed ID: 27071412 [TBL] [Abstract][Full Text] [Related]
2. Enhancing cell-free layer thickness by bypass channels in a wall. Saadatmand M; Shimogonya Y; Yamaguchi T; Ishikawa T J Biomech; 2016 Jul; 49(11):2299-2305. PubMed ID: 26803337 [TBL] [Abstract][Full Text] [Related]
3. Red blood cells tracking and cell-free layer formation in a microchannel with hyperbolic contraction: A CFD model validation. Gracka M; Lima R; Miranda JM; Student S; Melka B; Ostrowski Z Comput Methods Programs Biomed; 2022 Nov; 226():107117. PubMed ID: 36122496 [TBL] [Abstract][Full Text] [Related]
4. Measuring red blood cell flow dynamics in a glass capillary using Doppler optical coherence tomography and Doppler amplitude optical coherence tomography. Moger J; Matcher SJ; Winlove CP; Shore A J Biomed Opt; 2004; 9(5):982-94. PubMed ID: 15447020 [TBL] [Abstract][Full Text] [Related]
5. Shear flow-induced optical inhomogeneity of blood assessed in vivo and in vitro by spectral domain optical coherence tomography in the 1.3 μm wavelength range. Cimalla P; Walther J; Mittasch M; Koch E J Biomed Opt; 2011 Nov; 16(11):116020. PubMed ID: 22112125 [TBL] [Abstract][Full Text] [Related]
6. Capillary red blood cell velocimetry by phase-resolved optical coherence tomography. Tang J; Erdener SE; Fu B; Boas DA Opt Lett; 2017 Oct; 42(19):3976-3979. PubMed ID: 28957175 [TBL] [Abstract][Full Text] [Related]
7. Measurement of anisotropic reflection of flowing blood using optical coherence tomography. Nam KH; Jeong B; Jung IO; Ha H; Kim KH; Lee SJ J Biomed Opt; 2011 Dec; 16(12):120502. PubMed ID: 22191907 [TBL] [Abstract][Full Text] [Related]
8. Assessment of the flow velocity of blood cells in a microfluidic device using joint spectral and time domain optical coherence tomography. Bukowska DM; Derzsi L; Tamborski S; Szkulmowski M; Garstecki P; Wojtkowski M Opt Express; 2013 Oct; 21(20):24025-38. PubMed ID: 24104312 [TBL] [Abstract][Full Text] [Related]
9. Microvascular blood flow resistance: Role of red blood cell migration and dispersion. Katanov D; Gompper G; Fedosov DA Microvasc Res; 2015 May; 99():57-66. PubMed ID: 25724979 [TBL] [Abstract][Full Text] [Related]
10. Multiple scattering effects in Doppler optical coherence tomography of flowing blood. Kalkman J; Bykov AV; Streekstra GJ; van Leeuwen TG Phys Med Biol; 2012 Apr; 57(7):1907-17. PubMed ID: 22421380 [TBL] [Abstract][Full Text] [Related]
11. Simultaneous estimation of bidirectional particle flow and relative flux using MUSIC-OCT: phantom studies. Yousefi S; Wang RK Phys Med Biol; 2014 Nov; 59(22):6693-708. PubMed ID: 25327449 [TBL] [Abstract][Full Text] [Related]
12. Effect of uneven red cell influx on formation of cell-free layer in small venules. Namgung B; Kim S Microvasc Res; 2014 Mar; 92():19-24. PubMed ID: 24472285 [TBL] [Abstract][Full Text] [Related]
13. Local Hematocrit Fluctuation Induced by Malaria-Infected Red Blood Cells and Its Effect on Microflow. Wang T; Xing Z Biomed Res Int; 2018; 2018():8065252. PubMed ID: 29850568 [TBL] [Abstract][Full Text] [Related]
14. Measurement of individual red blood cell motions under high hematocrit conditions using a confocal micro-PTV system. Lima R; Ishikawa T; Imai Y; Takeda M; Wada S; Yamaguchi T Ann Biomed Eng; 2009 Aug; 37(8):1546-59. PubMed ID: 19521772 [TBL] [Abstract][Full Text] [Related]
15. Aqueous cell differentiation in anterior uveitis using Fourier-domain optical coherence tomography. Rose-Nussbaumer J; Li Y; Lin P; Suhler E; Asquith M; Rosenbaum JT; Huang D Invest Ophthalmol Vis Sci; 2015 Feb; 56(3):1430-6. PubMed ID: 25650415 [TBL] [Abstract][Full Text] [Related]
16. Impact of temporal resolution on estimating capillary RBC-flux with optical coherence tomography. Li B; Wang H; Fu B; Wang R; Sakadžic S; Boas DA J Biomed Opt; 2017 Jan; 22(1):16014. PubMed ID: 28125157 [TBL] [Abstract][Full Text] [Related]
17. Repeatability of Foveal Measurements Using Spectralis Optical Coherence Tomography Segmentation Software. Ctori I; Huntjens B PLoS One; 2015; 10(6):e0129005. PubMed ID: 26076457 [TBL] [Abstract][Full Text] [Related]
18. Velocity variation assessment of red blood cell aggregation with spectral domain Doppler optical coherence tomography. Xu X; Yu L; Chen Z Ann Biomed Eng; 2010 Oct; 38(10):3210-7. PubMed ID: 20473568 [TBL] [Abstract][Full Text] [Related]
19. Retinal nerve fiber layer thickness in a population of 12-year-old children in central China measured by iVue-100 spectral-domain optical coherence tomography: the Anyang Childhood Eye Study. Zhu BD; Li SM; Li H; Liu LR; Wang Y; Yang Z; Li SY; Kang MT; Fu J; Qi YH; Zhan SY; Wang N; Invest Ophthalmol Vis Sci; 2013 Dec; 54(13):8104-11. PubMed ID: 24150754 [TBL] [Abstract][Full Text] [Related]
20. In vitro measurement of particle margination in the microchannel flow: effect of varying hematocrit. Fitzgibbon S; Spann AP; Qi QM; Shaqfeh ESG Biophys J; 2015 May; 108(10):2601-2608. PubMed ID: 25992738 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]