These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Multiple red blood cell flows through microvascular bifurcations: cell free layer, cell trajectory, and hematocrit separation. Yin X; Thomas T; Zhang J Microvasc Res; 2013 Sep; 89():47-56. PubMed ID: 23727384 [TBL] [Abstract][Full Text] [Related]
23. Shear-induced diffusion of red blood cells measured with dynamic light scattering-optical coherence tomography. Tang J; Erdener SE; Li B; Fu B; Sakadzic S; Carp SA; Lee J; Boas DA J Biophotonics; 2018 Feb; 11(2):. PubMed ID: 28700129 [TBL] [Abstract][Full Text] [Related]
24. New insights into the microvascular mechanisms of drag reducing polymers: effect on the cell-free layer. Brands J; Kliner D; Lipowsky HH; Kameneva MV; Villanueva FS; Pacella JJ PLoS One; 2013; 8(10):e77252. PubMed ID: 24124610 [TBL] [Abstract][Full Text] [Related]
25. An automated cell analysis sensing system based on a microfabricated rheoscope for the study of red blood cells physiology. Bransky A; Korin N; Nemirovski Y; Dinnar U Biosens Bioelectron; 2006 Aug; 22(2):165-9. PubMed ID: 16426836 [TBL] [Abstract][Full Text] [Related]
26. Effect of Gravity Acceleration on Choroidal and Retinal Nerve Fiber Layer Thickness: A Swept-Source Optical Coherence Tomography Study. Kim DY; Song J; Kim JY; Choi K; Hyung S; Chae JB Invest Ophthalmol Vis Sci; 2017 Dec; 58(14):6050-6055. PubMed ID: 29196770 [TBL] [Abstract][Full Text] [Related]
27. Semi-automated red blood cell core detection in blood micro-flow. Fenech M; Le AV; Salame M; Gliah O; Chartrand C Microvasc Res; 2023 May; 147():104496. PubMed ID: 36739962 [TBL] [Abstract][Full Text] [Related]
28. Influence of axial length on thickness measurements using spectral-domain optical coherence tomography. Röck T; Bartz-Schmidt KU; Bramkamp M; Röck D Invest Ophthalmol Vis Sci; 2014 Oct; 55(11):7494-8. PubMed ID: 25298411 [TBL] [Abstract][Full Text] [Related]
29. Mapping diurnal changes in choroidal, Haller's and Sattler's layer thickness using 3-dimensional 1060-nm optical coherence tomography. Gabriel M; Esmaeelpour M; Shams-Mafi F; Hermann B; Zabihian B; Drexler W; Binder S; Ansari-Shahrezaei S Graefes Arch Clin Exp Ophthalmol; 2017 Oct; 255(10):1957-1963. PubMed ID: 28702696 [TBL] [Abstract][Full Text] [Related]
30. Comparison of retinal nerve fiber layer imaging by spectral domain optical coherence tomography and scanning laser ophthalmoscopy. Ye C; To E; Weinreb RN; Yu M; Liu S; Lam DS; Leung CK Ophthalmology; 2011 Nov; 118(11):2196-202. PubMed ID: 21762989 [TBL] [Abstract][Full Text] [Related]
31. Laminar microvascular transit time distribution in the mouse somatosensory cortex revealed by Dynamic Contrast Optical Coherence Tomography. Merkle CW; Srinivasan VJ Neuroimage; 2016 Jan; 125():350-362. PubMed ID: 26477654 [TBL] [Abstract][Full Text] [Related]
32. In Vivo Imaging and Morphometry of the Human Pre-Descemet's Layer and Endothelium With Ultrahigh-Resolution Optical Coherence Tomography. Bizheva K; Haines L; Mason E; MacLellan B; Tan B; Hileeto D; Sorbara L Invest Ophthalmol Vis Sci; 2016 May; 57(6):2782-7. PubMed ID: 27206248 [TBL] [Abstract][Full Text] [Related]
33. Collective dynamics of red blood cells on an in vitro microfluidic platform. M KR; Bhattacharya S; DasGupta S; Chakraborty S Lab Chip; 2018 Dec; 18(24):3939-3948. PubMed ID: 30475361 [TBL] [Abstract][Full Text] [Related]
34. Characterization of flowing blood optical property under various fibrinogen levels using optical coherence tomography. Fu F; Xu X; Geng J IEEE Trans Biomed Eng; 2012 Sep; 59(9):2613-8. PubMed ID: 22801485 [TBL] [Abstract][Full Text] [Related]
35. Quantification of photoreceptor layer thickness in normal eyes using optical coherence tomography. Chan A; Duker JS; Ishikawa H; Ko TH; Schuman JS; Fujimoto JG Retina; 2006; 26(6):655-60. PubMed ID: 16829808 [TBL] [Abstract][Full Text] [Related]
36. Impact of enhanced resolution, speed and penetration on three-dimensional retinal optical coherence tomography. Povazay B; Hofer B; Torti C; Hermann B; Tumlinson AR; Esmaeelpour M; Egan CA; Bird AC; Drexler W Opt Express; 2009 Mar; 17(5):4134-50. PubMed ID: 19259251 [TBL] [Abstract][Full Text] [Related]
37. Quantifying local characteristics of velocity, aggregation and hematocrit of human erythrocytes in a microchannel flow. Kaliviotis E; Dusting J; Sherwood JM; Balabani S Clin Hemorheol Microcirc; 2015 Sep; 63(2):123-48. PubMed ID: 26444611 [TBL] [Abstract][Full Text] [Related]
38. Ganglion cell-inner plexiform layer and retinal nerve fiber layer thickness according to myopia and optic disc area: a quantitative and three-dimensional analysis. Seo S; Lee CE; Jeong JH; Park KH; Kim DM; Jeoung JW BMC Ophthalmol; 2017 Mar; 17(1):22. PubMed ID: 28283025 [TBL] [Abstract][Full Text] [Related]
39. A longitudinal study of LASIK flap and stromal thickness with high-speed optical coherence tomography. Li Y; Netto MV; Shekhar R; Krueger RR; Huang D Ophthalmology; 2007 Jun; 114(6):1124-32. PubMed ID: 17320959 [TBL] [Abstract][Full Text] [Related]
40. Imaging and characterization of bioengineered blood vessels within a bioreactor using free-space and catheter-based OCT. Gurjarpadhye AA; Whited BM; Sampson A; Niu G; Sharma KS; Vogt WC; Wang G; Xu Y; Soker S; Rylander MN; Rylander CG Lasers Surg Med; 2013 Aug; 45(6):391-400. PubMed ID: 23740768 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]