BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 27071415)

  • 1. In vivo correlation mapping microscopy.
    McGrath J; Alexandrov S; Owens P; Subhash H; Leahy M
    J Biomed Opt; 2016 Apr; 21(4):46004. PubMed ID: 27071415
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced in vivo visualization of the microcirculation by topical application of fructose solution confirmed with correlation mapping optical coherence tomography.
    Enfield J; McGrath J; Daly SM; Leahy M
    J Biomed Opt; 2016 Aug; 21(8):081212. PubMed ID: 27311423
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo imaging of the microcirculation of the volar forearm using correlation mapping optical coherence tomography (cmOCT).
    Enfield J; Jonathan E; Leahy M
    Biomed Opt Express; 2011 Apr; 2(5):1184-93. PubMed ID: 21559130
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo optical imaging of human retinal capillary networks using speckle variance optical coherence tomography with quantitative clinico-histological correlation.
    Chan G; Balaratnasingam C; Xu J; Mammo Z; Han S; Mackenzie P; Merkur A; Kirker A; Albiani D; Sarunic MV; Yu DY
    Microvasc Res; 2015 Jul; 100():32-9. PubMed ID: 25917012
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of psoriatic plaque in vivo with correlation mapping optical coherence tomography.
    Zafar H; Enfield J; O'Connell ML; Ramsay B; Lynch M; Leahy MJ
    Skin Res Technol; 2014 May; 20(2):141-6. PubMed ID: 23869903
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatial calibration of structured illumination fluorescence microscopy using capillary tissue phantoms.
    Lee GS; Miele LF; Turhan A; Lin M; Hanidziar D; Konerding MA; Mentzer SJ
    Microsc Res Tech; 2009 Feb; 72(2):85-92. PubMed ID: 18937249
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Correlation mapping method for generating microcirculation morphology from optical coherence tomography (OCT) intensity images.
    Jonathan E; Enfield J; Leahy MJ
    J Biophotonics; 2011 Sep; 4(9):583-7. PubMed ID: 21887769
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microcirculation imaging based on full-range high-speed spectral domain correlation mapping optical coherence tomography.
    Subhash HM; Leahy MJ
    J Biomed Opt; 2014 Feb; 19(2):21103. PubMed ID: 23807553
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo full-field en face correlation mapping optical coherence tomography.
    McNamara PM; Subhash HM; Leahy MJ
    J Biomed Opt; 2013 Dec; 18(12):126008. PubMed ID: 24343439
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cellular resolution ex vivo imaging of gastrointestinal tissues with optical coherence microscopy.
    Aguirre AD; Chen Y; Bryan B; Mashimo H; Huang Q; Connolly JL; Fujimoto JG
    J Biomed Opt; 2010; 15(1):016025. PubMed ID: 20210470
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Feasibility of correlation mapping optical coherence tomography angiographic technique using a 200  kHz vertical-cavity surface-emitting laser source for in vivo microcirculation imaging applications.
    Lal C; Subhash HM; Alexandrov S; Leahy MJ
    Appl Opt; 2018 Aug; 57(22):E224-E231. PubMed ID: 30117906
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel image processing workflow for the in vivo quantification of skin microvasculature using dynamic optical coherence tomography.
    Zugaj D; Chenet A; Petit L; Vaglio J; Pascual T; Piketty C; Bourdes V
    Skin Res Technol; 2018 Aug; 24(3):396-406. PubMed ID: 29399881
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Imaging fluorescence fluctuation spectroscopy: new tools for quantitative bioimaging.
    Bag N; Wohland T
    Annu Rev Phys Chem; 2014; 65():225-48. PubMed ID: 24328446
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved microcirculation imaging of human skin in vivo using optical microangiography with a correlation mapping mask.
    Choi WJ; Reif R; Yousefi S; Wang RK
    J Biomed Opt; 2014 Mar; 19(3):36010. PubMed ID: 24623159
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Co-registered spectrally encoded confocal microscopy and optical frequency domain imaging system.
    Kang DK; Suter MJ; Boudoux C; Yachimski PS; Puricelli WP; Nishioka NS; Mino-Kenudson M; Lauwers GY; Bouma BE; Tearney GJ
    J Microsc; 2010 Aug; 239(2):87-91. PubMed ID: 20629914
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Removing noises caused by motion artefacts in microcirculation maps of human skin in vivo.
    Chen C; Shi W; Gao W
    J Microsc; 2015 Dec; 260(3):389-99. PubMed ID: 26356237
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-definition optical coherence tomography enables visualization of individual cells in healthy skin: comparison to reflectance confocal microscopy.
    Boone M; Jemec GB; Del Marmol V
    Exp Dermatol; 2012 Oct; 21(10):740-4. PubMed ID: 22913427
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic Optical Coherence Tomography Capillaroscopy: A New Imaging Tool in Autoimmune Connective Tissue Disease.
    Ring HC; Themstrup L; Banzhaf CA; Jemec GB; Mogensen M
    JAMA Dermatol; 2016 Oct; 152(10):. PubMed ID: 27366896
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatiotemporal closure of fractional laser-ablated channels imaged by optical coherence tomography and reflectance confocal microscopy.
    Banzhaf CA; Wind BS; Mogensen M; Meesters AA; Paasch U; Wolkerstorfer A; Haedersdal M
    Lasers Surg Med; 2016 Feb; 48(2):157-65. PubMed ID: 26266688
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Validation of Dynamic optical coherence tomography for non-invasive, in vivo microcirculation imaging of the skin.
    Themstrup L; Welzel J; Ciardo S; Kaestle R; Ulrich M; Holmes J; Whitehead R; Sattler EC; Kindermann N; Pellacani G; Jemec GB
    Microvasc Res; 2016 Sep; 107():97-105. PubMed ID: 27235002
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.