BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 27071729)

  • 1. Novel Solid Encapsulation of Ethylene Gas Using Amorphous α-Cyclodextrin and the Release Characteristics.
    Ho BT; Bhandari BR
    J Agric Food Chem; 2016 May; 64(17):3318-23. PubMed ID: 27071729
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Release kinetics of ethylene gas from ethylene-α-cyclodextrin inclusion complexes.
    Ho BT; Joyce DC; Bhandari BR
    Food Chem; 2011 Nov; 129(2):259-266. PubMed ID: 30634224
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Encapsulation of Ethylene Gas into Granular Cold-Water-Soluble Starch: Structure and Release Kinetics.
    Shi L; Fu X; Tan CP; Huang Q; Zhang B
    J Agric Food Chem; 2017 Mar; 65(10):2189-2197. PubMed ID: 28215072
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Encapsulation of ethylene gas into α-cyclodextrin and characterisation of the inclusion complexes.
    Ho BT; Joyce DC; Bhandari BR
    Food Chem; 2011 Jul; 127(2):572-80. PubMed ID: 23140702
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Encapsulation of CO2 into amorphous alpha-cyclodextrin powder at different moisture contents - Part 1: Encapsulation capacity and stability of inclusion complexes.
    Ho TM; Howes T; Bhandari BR
    Food Chem; 2016 Jul; 203():348-355. PubMed ID: 26948624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Encapsulation of CO2 into amorphous and crystalline α-cyclodextrin powders and the characterization of the complexes formed.
    Ho TM; Howes T; Bhandari BR
    Food Chem; 2015 Nov; 187():407-15. PubMed ID: 25977044
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Encapsulation of CO2 into amorphous alpha-cyclodextrin powder at different moisture contents - Part 2: Characterization of complexed powders and determination of crystalline structure.
    Ho TM; Howes T; Jack KS; Bhandari BR
    Food Chem; 2016 Sep; 206():92-101. PubMed ID: 27041303
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Encapsulation and release characteristics of ethylene gas from V
    Shi L; Zhong L; Zhang B; Fu X; Huang Q
    Int J Biol Macromol; 2020 Aug; 156():10-17. PubMed ID: 32243935
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation and characterization of polypseudorotaxanes based on block-selected inclusion complexation between poly(propylene oxide)-poly(ethylene oxide)-poly(propylene oxide) triblock copolymers and alpha-cyclodextrin.
    Li J; Ni X; Zhou Z; Leong KW
    J Am Chem Soc; 2003 Feb; 125(7):1788-95. PubMed ID: 12580604
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Encapsulation and release kinetics of ethylene into "pre-formed" V-type starch and granular cold-water-soluble starch.
    Shi L; Li Z; Guo J; Kong L; Ren Z; Weng W
    Carbohydr Polym; 2022 Jul; 287():119360. PubMed ID: 35422304
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Annealing improves the concentration and controlled release of encapsulated ethylene in V-type starch.
    Shi L; Zhang B; Li C; Fu X; Huang Q
    Int J Biol Macromol; 2019 Dec; 141():947-954. PubMed ID: 31476397
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetics of molecular encapsulation of 1-methylcyclopropene into alpha-cyclodextrin.
    Neoh TL; Yamauchi K; Yoshii H; Furuta T
    J Agric Food Chem; 2007 Dec; 55(26):11020-6. PubMed ID: 18052092
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simple, clean preparation method for cross-linked α-cyclodextrin nanoparticles via inclusion complexation.
    Zhu W; Zhang K; Chen Y; Xi F
    Langmuir; 2013 May; 29(20):5939-43. PubMed ID: 23472675
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dehydration of CO
    Ho TM; Howes T; Bhandari BR
    J Microencapsul; 2016 Dec; 33(8):763-772. PubMed ID: 27866448
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation and characterization of inclusion complexes of poly(butylene succinate) with alpha- and gamma-cyclodextrins.
    Dong T; He Y; Shin KM; Inoue Y
    Macromol Biosci; 2004 Dec; 4(12):1084-91. PubMed ID: 15586385
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two-phase channel structures based on alpha-cyclodextrin-polyethylene glycol inclusion complexes.
    Topchieva IN; Tonelli AE; Panova IG; Matuchina EV; Kalashnikov FA; Gerasimov VI; Rusa CC; Rusa M; Hunt MA
    Langmuir; 2004 Oct; 20(21):9036-43. PubMed ID: 15461484
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CO
    Li H; Zhang B; Li C; Fu X; Wang Z; Huang Q
    Food Chem; 2019 Aug; 289():145-151. PubMed ID: 30955596
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Supramolecular hydrogel formation based on inclusion complexation between poly(ethylene glycol)-modified chitosan and alpha-cyclodextrin.
    Huh KM; Cho YW; Chung H; Kwon IC; Jeong SY; Ooya T; Lee WK; Sasaki S; Yui N
    Macromol Biosci; 2004 Feb; 4(2):92-9. PubMed ID: 15468199
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Micrometer size rod formed by secondary self assembly of omeprazole with α- and β-cyclodextrins.
    Rajendiran N; Venkatesh G
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Feb; 137():832-40. PubMed ID: 25277631
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Poly(ε-caprolactone) nanowebs functionalized with α- and γ-cyclodextrins.
    Narayanan G; Gupta BS; Tonelli AE
    Biomacromolecules; 2014 Nov; 15(11):4122-33. PubMed ID: 25296366
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.