These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 27071914)
1. RNA-seq analysis for detecting quantitative trait-associated genes. Seo M; Kim K; Yoon J; Jeong JY; Lee HJ; Cho S; Kim H Sci Rep; 2016 Apr; 6():24375. PubMed ID: 27071914 [TBL] [Abstract][Full Text] [Related]
2. BALLI: Bartlett-adjusted likelihood-based linear model approach for identifying differentially expressed genes with RNA-seq data. Park K; An J; Gim J; Seo M; Lee W; Park T; Won S BMC Genomics; 2019 Jul; 20(1):540. PubMed ID: 31266443 [TBL] [Abstract][Full Text] [Related]
3. Robust identification of differentially expressed genes from RNA-seq data. Shahjaman M; Manir Hossain Mollah M; Rezanur Rahman M; Islam SMS; Nurul Haque Mollah M Genomics; 2020 Mar; 112(2):2000-2010. PubMed ID: 31756426 [TBL] [Abstract][Full Text] [Related]
4. Bootstrap-based differential gene expression analysis for RNA-Seq data with and without replicates. Al Seesi S; Tiagueu YT; Zelikovsky A; Măndoiu II BMC Genomics; 2014; 15 Suppl 8(Suppl 8):S2. PubMed ID: 25435284 [TBL] [Abstract][Full Text] [Related]
5. Removal of redundant contigs from de novo RNA-Seq assemblies via homology search improves accurate detection of differentially expressed genes. Ono H; Ishii K; Kozaki T; Ogiwara I; Kanekatsu M; Yamada T BMC Genomics; 2015 Dec; 16():1031. PubMed ID: 26637306 [TBL] [Abstract][Full Text] [Related]
6. Differential expression of genes in milk of dairy cattle during lactation. Yang J; Jiang J; Liu X; Wang H; Guo G; Zhang Q; Jiang L Anim Genet; 2016 Apr; 47(2):174-80. PubMed ID: 26692495 [TBL] [Abstract][Full Text] [Related]
7. Combining mouse mammary gland gene expression and comparative mapping for the identification of candidate genes for QTL of milk production traits in cattle. Ron M; Israeli G; Seroussi E; Weller JI; Gregg JP; Shani M; Medrano JF BMC Genomics; 2007 Jun; 8():183. PubMed ID: 17584498 [TBL] [Abstract][Full Text] [Related]
8. Statistical detection of differentially expressed genes based on RNA-seq: from biological to phylogenetic replicates. Gu X Brief Bioinform; 2016 Mar; 17(2):243-8. PubMed ID: 26108230 [TBL] [Abstract][Full Text] [Related]
9. Differential expression analysis of RNA sequencing data by incorporating non-exonic mapped reads. Chen HI; Liu Y; Zou Y; Lai Z; Sarkar D; Huang Y; Chen Y BMC Genomics; 2015; 16 Suppl 7(Suppl 7):S14. PubMed ID: 26099631 [TBL] [Abstract][Full Text] [Related]
10. Characterizing Milk Production Related Genes in Holstein Using RNA-seq. Seo M; Lee HJ; Kim K; Caetano-Anolles K; Jeong JY; Park S; Oh YK; Cho S; Kim H Asian-Australas J Anim Sci; 2016 Mar; 29(3):343-51. PubMed ID: 26950864 [TBL] [Abstract][Full Text] [Related]
11. Effect of low-expression gene filtering on detection of differentially expressed genes in RNA-seq data. Sha Y; Phan JH; Wang MD Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():6461-4. PubMed ID: 26737772 [TBL] [Abstract][Full Text] [Related]
12. DegPack: a web package using a non-parametric and information theoretic algorithm to identify differentially expressed genes in multiclass RNA-seq samples. An J; Kim K; Chae H; Kim S Methods; 2014 Oct; 69(3):306-14. PubMed ID: 24981074 [TBL] [Abstract][Full Text] [Related]
13. Comparison of microarrays and RNA-seq for gene expression analyses of dose-response experiments. Black MB; Parks BB; Pluta L; Chu TM; Allen BC; Wolfinger RD; Thomas RS Toxicol Sci; 2014 Feb; 137(2):385-403. PubMed ID: 24194394 [TBL] [Abstract][Full Text] [Related]
14. An integrative systems genetics approach reveals potential causal genes and pathways related to obesity. Kogelman LJ; Zhernakova DV; Westra HJ; Cirera S; Fredholm M; Franke L; Kadarmideen HN Genome Med; 2015 Oct; 7():105. PubMed ID: 26482556 [TBL] [Abstract][Full Text] [Related]
15. Association analysis for udder health based on SNP-panel and sequence data in Danish Holsteins. Wu X; Lund MS; Sahana G; Guldbrandtsen B; Sun D; Zhang Q; Su G Genet Sel Evol; 2015 Jun; 47(1):50. PubMed ID: 26087655 [TBL] [Abstract][Full Text] [Related]
16. What if we ignore the random effects when analyzing RNA-seq data in a multifactor experiment. Cui S; Ji T; Li J; Cheng J; Qiu J Stat Appl Genet Mol Biol; 2016 Apr; 15(2):87-105. PubMed ID: 26926865 [TBL] [Abstract][Full Text] [Related]
17. GLiMMPS: robust statistical model for regulatory variation of alternative splicing using RNA-seq data. Zhao K; Lu ZX; Park JW; Zhou Q; Xing Y Genome Biol; 2013 Jul; 14(7):R74. PubMed ID: 23876401 [TBL] [Abstract][Full Text] [Related]
18. How many biological replicates are needed in an RNA-seq experiment and which differential expression tool should you use? Schurch NJ; Schofield P; Gierliński M; Cole C; Sherstnev A; Singh V; Wrobel N; Gharbi K; Simpson GG; Owen-Hughes T; Blaxter M; Barton GJ RNA; 2016 Jun; 22(6):839-51. PubMed ID: 27022035 [TBL] [Abstract][Full Text] [Related]
19. Gene expression and splicing alterations analyzed by high throughput RNA sequencing of chronic lymphocytic leukemia specimens. Liao W; Jordaan G; Nham P; Phan RT; Pelegrini M; Sharma S BMC Cancer; 2015 Oct; 15():714. PubMed ID: 26474785 [TBL] [Abstract][Full Text] [Related]
20. Time-series RNA-seq analysis package (TRAP) and its application to the analysis of rice, Oryza sativa L. ssp. Japonica, upon drought stress. Jo K; Kwon HB; Kim S Methods; 2014 Jun; 67(3):364-72. PubMed ID: 24518221 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]