BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 27071944)

  • 1. Single-step synthesis of graphene quantum dots by femtosecond laser ablation of graphene oxide dispersions.
    Russo P; Liang R; Jabari E; Marzbanrad E; Toyserkani E; Zhou YN
    Nanoscale; 2016 Apr; 8(16):8863-77. PubMed ID: 27071944
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Femtosecond laser ablation of highly oriented pyrolytic graphite: a green route for large-scale production of porous graphene and graphene quantum dots.
    Russo P; Hu A; Compagnini G; Duley WW; Zhou NY
    Nanoscale; 2014 Feb; 6(4):2381-9. PubMed ID: 24435549
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Liquid-phase laser ablation synthesis of graphene quantum dots from carbon nano-onions: Comparison with chemical oxidation.
    Calabro RL; Yang DS; Kim DY
    J Colloid Interface Sci; 2018 Oct; 527():132-140. PubMed ID: 29787949
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nitrogen-doped graphene quantum dots synthesized by femtosecond laser ablation in liquid from laser induced graphene.
    Shen L; Zhou S; Huang F; Zhou H; Zhang H; Wang S; Zhou S
    Nanotechnology; 2021 Dec; 33(11):. PubMed ID: 34874289
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Graphene quantum dots from a facile sono-Fenton reaction and its hybrid with a polythiophene graft copolymer toward photovoltaic application.
    Routh P; Das S; Shit A; Bairi P; Das P; Nandi AK
    ACS Appl Mater Interfaces; 2013 Dec; 5(23):12672-80. PubMed ID: 24245528
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Origin of tunable photoluminescence from graphene quantum dots synthesized via pulsed laser ablation.
    Santiago SR; Lin TN; Yuan CT; Shen JL; Huang HY; Lin CA
    Phys Chem Chem Phys; 2016 Aug; 18(32):22599-605. PubMed ID: 27476476
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of N-doped graphene quantum dots by pulsed laser ablation with diethylenetriamine (DETA) and their photoluminescence.
    Santiago SRM; Lin TN; Chang CH; Wong YA; Lin CAJ; Yuan CT; Shen JL
    Phys Chem Chem Phys; 2017 Aug; 19(33):22395-22400. PubMed ID: 28805860
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Facile synthesis and photoluminescence characteristics of blue-emitting nitrogen-doped graphene quantum dots.
    Gu J; Zhang X; Pang A; Yang J
    Nanotechnology; 2016 Apr; 27(16):165704. PubMed ID: 26964866
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrafast Method for Selective Design of Graphene Quantum Dots with Highly Efficient Blue Emission.
    Kang SH; Mhin S; Han H; Kim KM; Jones JL; Ryu JH; Kang JS; Kim SH; Shim KB
    Sci Rep; 2016 Dec; 6():38423. PubMed ID: 27929121
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface engineering of graphene quantum dots and their applications as efficient surfactants.
    Cho HH; Yang H; Kang DJ; Kim BJ
    ACS Appl Mater Interfaces; 2015 Apr; 7(16):8615-21. PubMed ID: 25825823
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering of luminescent graphene quantum dot-gold (GQD-Au) hybrid nanoparticles for functional applications.
    Wadhwa S; John AT; Mathur A; Khanuja M; Bhattacharya G; Roy SS; Ray SC
    MethodsX; 2020; 7():100963. PubMed ID: 32637335
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Lateral Size of Graphene Quantum Dots on Their Properties and Application.
    Zhang F; Liu F; Wang C; Xin X; Liu J; Guo S; Zhang J
    ACS Appl Mater Interfaces; 2016 Jan; 8(3):2104-10. PubMed ID: 26725374
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation of waterborne anti-counterfeiting ink based on dual luminescent nanohybrids of bacterial cellulose nanocrystals and lanthanide‑nitrogen co-modified GQDs.
    Jia Z; Zhang J; Ji Z; Yang X; Shi C; Sun X; Guo Y
    Int J Biol Macromol; 2024 Jun; 271(Pt 1):132341. PubMed ID: 38821792
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simple preparation of graphene quantum dots with controllable surface states from graphite.
    Kang S; Jeong YK; Jung KH; Son Y; Choi SC; An GS; Han H; Kim KM
    RSC Adv; 2019 Nov; 9(66):38447-38453. PubMed ID: 35540206
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of nitrogen doping on the photoluminescence intensity of graphene quantum dots.
    Santiago SRM; Wong YA; Lin TN; Chang CH; Yuan CT; Shen JL
    Opt Lett; 2017 Sep; 42(18):3642-3645. PubMed ID: 28914922
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Laser Direct Writing of Graphene Quantum Dots inside a Transparent Polymer.
    Hayashi S; Tsunemitsu K; Terakawa M
    Nano Lett; 2022 Jan; 22(2):775-782. PubMed ID: 34962395
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of monodisperse silver nanoparticles for ink-jet printed flexible electronics.
    Zhang Z; Zhang X; Xin Z; Deng M; Wen Y; Song Y
    Nanotechnology; 2011 Oct; 22(42):425601. PubMed ID: 21937786
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Red, Yellow, and Blue Luminescence by Graphene Quantum Dots: Syntheses, Mechanism, and Cellular Imaging.
    Gao T; Wang X; Yang LY; He H; Ba XX; Zhao J; Jiang FL; Liu Y
    ACS Appl Mater Interfaces; 2017 Jul; 9(29):24846-24856. PubMed ID: 28675929
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of photoluminescence properties of graphene quantum dots via hydrothermal treatment.
    Luo P; Qiu Y; Guan X; Jiang L
    Phys Chem Chem Phys; 2014 Sep; 16(35):19011-6. PubMed ID: 25093991
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient Solid-State Photoluminescence of Graphene Quantum Dots Embedded in Boron Oxynitride for AC-Electroluminescent Device.
    Park M; Yoon H; Lee J; Kim J; Lee J; Lee SE; Yoo S; Jeon S
    Adv Mater; 2018 Sep; 30(38):e1802951. PubMed ID: 30085381
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.