These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 270720)

  • 1. Selective recognition of nucleic acids by proteins: the specificity of guanine interaction with carboxylate ions.
    Lancelot G; Hélène C
    Proc Natl Acad Sci U S A; 1977 Nov; 74(11):4872-5. PubMed ID: 270720
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Models of interaction between nucleic acids and proteins. Hydrogen bonding of arginine with nucleic acid bases, phosphate groups and carboxylic acids.
    Lancelot G; Mayer R; Hélène C
    Biochim Biophys Acta; 1979 Sep; 564(2):181-90. PubMed ID: 486477
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphate-guanosine interactions. A model for the involvement of guanine derivatives in autocatalytic reactions of ribonucleic acids.
    Lancelot G; Hélène C
    J Biol Chem; 1984 Dec; 259(24):15046-50. PubMed ID: 6210285
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Study by the proton magnetic resonance method of complex formation between nucleosides and compounds modeling amino acid residues of proteins in dimethyl sulfoxide].
    Bruskov VI; Bushuev VN
    Biofizika; 1977; 22(1):26-31. PubMed ID: 849506
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prominent stacking interaction with aromatic amino acid by N-quarternization of nucleic acid base: X-ray crystallographic characteristics and biological implications.
    Ishida T; Ueda H; Segawa K; Doi M; Inoue M
    Arch Biochem Biophys; 1990 Apr; 278(1):217-27. PubMed ID: 2321961
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct proton exchange between complementary nucleic acid bases.
    Iwahashi H; Kyogoku Y
    Nature; 1978 Jan; 271(5642):277-8. PubMed ID: 622169
    [No Abstract]   [Full Text] [Related]  

  • 7. STUDIES OF HYDROGEN-BONDED SYSTEMS. II. TUNNELING AND TAUTOMERIC EQUILIBRIA IN THE N-H...N HYDROGEN BOND OF THE GUANINE-CYTOSINE BASE PAIR.
    REIN R; HARRIS FE
    J Chem Phys; 1965 Mar; 42():2177-80. PubMed ID: 14296914
    [No Abstract]   [Full Text] [Related]  

  • 8. Nitrogen-15 chemical shifts in AT (adenine-thymine) and CG (cytosine-guanine) nucleic acid base pairs.
    Facelli JC
    J Biomol Struct Dyn; 1998 Dec; 16(3):619-29. PubMed ID: 10052618
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proton magnetic resonance studies of specific association of nucleic acid constitutent bases in a nonaqueous solvent. Utility of DTBN radical to probe the affinity of hydrogen bonding involved in complementary base pairs1.
    Morishima I; Inubushi T; Yonezawa T; Kyogoku Y
    J Am Chem Soc; 1977 Jun; 99(13):4299-4305. PubMed ID: 864117
    [No Abstract]   [Full Text] [Related]  

  • 10. [HALOGENATION OF NUCLEIC ACIDS. I. ACTION OF BROMINE ON BASES AND NUCLEOSIDES IN DIMETHYLFORMAMIDE MEDIUM].
    DUVAL J; EBEL JP
    Bull Soc Chim Biol (Paris); 1964; 46():1059-71. PubMed ID: 14220115
    [No Abstract]   [Full Text] [Related]  

  • 11. Photochemical selectivity in guanine-cytosine base-pair structures.
    Abo-Riziq A; Grace L; Nir E; Kabelac M; Hobza P; de Vries MS
    Proc Natl Acad Sci U S A; 2005 Jan; 102(1):20-3. PubMed ID: 15618394
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Association by hydrogen bonding of mononucleotides in aqueous solution.
    Raszka M; Kaplan NO
    Proc Natl Acad Sci U S A; 1972 Aug; 69(8):2025-9. PubMed ID: 4506070
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Internucleotide J-couplings and chemical shifts of the N-H···N hydrogen-bonds in the radiation-damaged guanine-cytosine base pairs.
    Li H; Zhang L; Han L; Sun W; Bu Y
    J Comput Chem; 2011 Apr; 32(6):1159-69. PubMed ID: 21387342
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-association and base pairing of guanosine, cytidine, adenosine, and uridine in dimethyl sulfoxide solution measured by 15N nuclear magnetic resonance spectroscopy.
    Dyllick-Brenzinger C; Sullivan GR; Pang PP; Roberts JD
    Proc Natl Acad Sci U S A; 1980 Oct; 77(10):5580-2. PubMed ID: 6932658
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction of cyclic cytosine-, guanine-, thymine-, uracil- and mixed guanine-cytosine base tetrads with K+, Na+ and Li+ ions -- a density functional study.
    Meyer M; Sühnel J
    J Biomol Struct Dyn; 2003 Feb; 20(4):507-17. PubMed ID: 12529150
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stabilization energies of the hydrogen-bonded and stacked structures of nucleic acid base pairs in the crystal geometries of CG, AT, and AC DNA steps and in the NMR geometry of the 5'-d(GCGAAGC)-3' hairpin: Complete basis set calculations at the MP2 and CCSD(T) levels.
    Dabkowska I; Gonzalez HV; Jurecka P; Hobza P
    J Phys Chem A; 2005 Feb; 109(6):1131-6. PubMed ID: 16833422
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrogen bonding between nucleic acid bases and carboxylic acids.
    Lancelot G
    J Am Chem Soc; 1977 Oct; 99(21):7037-42. PubMed ID: 903534
    [No Abstract]   [Full Text] [Related]  

  • 18. Differential DNA recognition by the enantiomers of 1-Rh(MGP)2 phi: a combination of shape selection and direct readout.
    Franklin SJ; Barton JK
    Biochemistry; 1998 Nov; 37(46):16093-105. PubMed ID: 9819202
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protonated base pairs explain the ambiguous pairing properties of O6-methylguanine.
    Williams LD; Shaw BR
    Proc Natl Acad Sci U S A; 1987 Apr; 84(7):1779-83. PubMed ID: 3470757
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrogen bonding effects on the (15)N and (1)H shielding tensors in nucleic acid base pairs.
    Czernek J; Fiala R; Sklenár V
    J Magn Reson; 2000 Jul; 145(1):142-6. PubMed ID: 10873505
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.