These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 270720)

  • 21. Ring current shifts in GU base pairs.
    Geerdes HA; Hilbers CW
    FEBS Lett; 1979 Nov; 107(1):125-8. PubMed ID: 499533
    [No Abstract]   [Full Text] [Related]  

  • 22. Selective Na(+)/K(+) effects on the formation of α-cyclodextrin complexes with aromatic carboxylic acids: competition for the guest.
    Terekhova IV; Romanova AO; Kumeev RS; Fedorov MV
    J Phys Chem B; 2010 Oct; 114(39):12607-13. PubMed ID: 20843099
    [TBL] [Abstract][Full Text] [Related]  

  • 23. H-bonding patterns in the platinated guanine-cytosine base pair and guanine-cytosine-guanine-cytosine base tetrad: an electron density deformation analysis and AIM study.
    Gu J; Wang J; Leszczynski J
    J Am Chem Soc; 2004 Oct; 126(39):12651-60. PubMed ID: 15453799
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hydrogen-bonded nucleic acid base pairs containing unusual base tautomers: complete basis set calculations at the MP2 and CCSD(T) levels.
    Rejnek J; Hobza P
    J Phys Chem B; 2007 Jan; 111(3):641-5. PubMed ID: 17228922
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The hydrogen bonding of cytosine with guanine: calorimetric and 1H-nmr analysis of the molecular interactions of nucleic acid bases.
    Williams LD; Chawla B; Shaw BR
    Biopolymers; 1987 Apr; 26(4):591-603. PubMed ID: 3567328
    [No Abstract]   [Full Text] [Related]  

  • 26. Marked variations of dissociation energy and H-bond character of the guanine-cytosine base pair induced by one-electron oxidation and Li+ cation coupling.
    Sun L; Bu Y
    J Phys Chem B; 2005 Jan; 109(1):593-600. PubMed ID: 16851051
    [TBL] [Abstract][Full Text] [Related]  

  • 27. (G-H)*-C and G-(C-H)* radicals derived from the guanine.cytosine base pair cause DNA subunit lesions.
    Bera PP; Schaefer HF
    Proc Natl Acad Sci U S A; 2005 May; 102(19):6698-703. PubMed ID: 15814617
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Physicochemical basis of the recognition process in nucleic acid interactions. 3. Proton magnetic resonance studies on the interactions of polyuridylic acid and polycytidylic acid with nucleosides, 5'-nucleotides, and nucleoside triphosphates.
    Ts'o PO; Schweizer MP
    Biochemistry; 1968 Aug; 7(8):2636-71. PubMed ID: 5666744
    [No Abstract]   [Full Text] [Related]  

  • 29. Specific interaction of isocytosine and amino acid carboxylic group shifts the base tautomeric equilibrium.
    Samijlenko SP; Potyahaylo AL; Stepanyugin AV; Hovorun DM
    Ukr Biokhim Zh (1999); 2003; 75(1):42-8. PubMed ID: 14574736
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Noncovalent interactions between modified cytosine and guanine DNA base pair mimics investigated by terahertz spectroscopy and solid-state density functional theory.
    King MD; Korter TM
    J Phys Chem A; 2011 Dec; 115(50):14391-6. PubMed ID: 22107026
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Prediction of interaction energies of substituted hydrogen-bonded Watson-Crick cytosine:guanine(8X) base pairs.
    Xue C; Popelier PL
    J Phys Chem B; 2009 Mar; 113(10):3245-50. PubMed ID: 19260717
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hydrogen-bonded proton transfer in the protonated guanine-cytosine (GC+H)+ base pair.
    Lin Y; Wang H; Gao S; Schaefer HF
    J Phys Chem B; 2011 Oct; 115(40):11746-56. PubMed ID: 21888406
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A selective recognition mode of a nucleic acid base by an aromatic amino acid: L-phenylalanine-7-methylguanosine 5'-monophosphate stacking interaction.
    Ishida T; Doi M; Inoue M
    Nucleic Acids Res; 1988 Jul; 16(13):6175-90. PubMed ID: 3399389
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The small planarization barriers for the amino group in the nucleic acid bases.
    Wang S; Schaefer HF
    J Chem Phys; 2006 Jan; 124(4):044303. PubMed ID: 16460158
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Deprotonated guanine·cytosine and 9-methylguanine·cytosine base pairs and their "non-statistical" kinetics: a combined guided-ion beam and computational study.
    Lu W; Liu J
    Phys Chem Chem Phys; 2016 Nov; 18(47):32222-32237. PubMed ID: 27849082
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ab-initio quantum mechanical calculations of NMR chemical shifts in nucleic acid constituents. I. The Watson-Crick base pairs.
    Giessner-Prettre C
    J Biomol Struct Dyn; 1984 Aug; 2(1):233-48. PubMed ID: 6400932
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Homopairing possibilities of the DNA bases cytosine and guanine: an ab initio DFT study.
    Kelly RE; Lee YJ; Kantorovich LN
    J Phys Chem B; 2005 Nov; 109(46):22045-52. PubMed ID: 16853862
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reaction of diethyl pyrocarbonate with nucleic acid components. Bases and nucleosides derived from guanine, cytosine, and uracil.
    Vincze A; Henderson RE; McDonald JJ; Leonard NJ
    J Am Chem Soc; 1973 Apr; 95(8):2677-82. PubMed ID: 4694530
    [No Abstract]   [Full Text] [Related]  

  • 39. Effects of OH radical addition on proton transfer in the guanine-cytosine base pair.
    Zhang Rb; Eriksson LA
    J Phys Chem B; 2007 Jun; 111(23):6571-6. PubMed ID: 17506547
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Phenylalanine transfer RNA: molecular dynamics simulation.
    Harvey SC; Prabhakaran M; Mao B; McCammon JA
    Science; 1984 Mar; 223(4641):1189-91. PubMed ID: 6560785
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.